\bigcirc NSTX

MHD, Transport and scenario development on NSTX

Presented by D. A. Gates At the 10th Spherical Tokamak Workshop Kyoto University, Kyoto, Japan September 27 - October 1, 2004

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI SNL** UC Davis **UC Irvine UCLA** UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching **U** Quebec

Outline

- Scenario development
 - Precision control
 - High κ
 - Long pulse
 - High β
- MHD
 - Resistive wall modes
 - Error fields
- Transport
 - Global Scalings
 - Transport barriers
 - Momentum confinement
- Summary and Plans

rtEFIT/isoflux controls boundary precisely

- Real time digital ⁽ control of plasma boundary based on inversion of the Grad-Shafronov Equation
- Isoflux control - $V_{PFi} = G_i \delta \psi_i$ where $\delta \psi_i$ is the flux error between requested and actual boundary along control segment
- Used for 40% of experiments in 2004

Improved control system expands operating boundaries

- Control latency reduced to 1/4 previous value
- Plasma elongation increased ~30% (at fixed l_i)
- Increased elongation has broadened operating space (pulse length, β)

From EFIT - entire NSTX database

VSTX

Long pulse discharges extended

- High elongation extends pulse at higher current (raises bootstrap current, edge q)
- Early H-mode reduces flux consumption during current ramp Boundary from 109063 overlaid (green)

Magnetic pulse length increased

- Simulataneous doubling of β_t (pulse averaged) and 50 % increase in normalized pulse length ($\tau_{pulseN} = \int I_p dt / \langle I_{rod} \rangle$)
- Improvement correlates strongly with high κ

High β_t achieved at $I_p/I_{rod} > 1$

- $I_N = I_p / aB \sim 7 (MA / [m \bullet T]) I_p / I_{rod} \sim 1.1$
- $\beta_t \sim 39\%$ uncertain within 10%
- MSE available but not yet analyzed

High β regime extended

- Many shots with $\beta_t > 35\%$
- th p_t . Troyon scaling confirmed with ~ 6.3 (wall \rightarrow) • Troyon scaling
- Highest β also at high $\kappa \sim 2.3$

EFIT data from 2004

VSTX

Clear signature of RWM observed

$$\frac{\text{Modified resonance}}{S_* \nu_* / (1 + md) + 1) \hat{\omega}_f^2 + (s(1 - md) + \Omega_{\phi}^2) = 0$$

"static error field" response

$$\frac{\text{New resonance}}{\hat{\omega}_f^2 = v_* (1 + md) / 2S_*}$$

Theory / XP show

- Time-dependent error field yields new resonance
 - may be responsible for mode trigger
- Mode rotates <u>counter</u> to plasma rotation – F-A theory shows as "kink branch"
 - n=1 phase velocity not constant due to error field
- Rough calculation of ω/2π ~ 350
 Hz; agrees with PF coil ripple
- Initial results quantitative comparison continues

RWM rotation collapse differs from other modes

Core rotation damping when 1/1 mode onsets

leads to "rigid rotor" plasma core

- Clear momentum transfer across rational surface near R = 1.3m
- Global rotation damping by RWM
 1/1 tearing mode is absent
- Edge rotation does not halt
 - consistent with neoclassical toroidal viscosity ~ δB²*Ti^{0.5}

Error field ampification measured

Global confinement scalings from dedicated scans

- Specific scans of control parameters (plasma current and in put power) show scalings similar to conventional aspect ratio tokamaks
- Fits to thermal confinement show similar trends

τ_E scaling differs for larger database

- For global database strong dependence of confinement on toroidal field
- Weaker dependence on plasma current
- Difference under investigation -> finite gyro-radius effect?

NSTX Results Review 2004 - S. Kaye

Diffusivity profiles under study

Diffusivity (m²/sec)

- Thermal diffusivities from TRANSP based on measured profiles of T_e, n_e (20 channel Thomson scattering, 60Hz), T_i, Z_{eff} (51 channel, 100Hz CHERS)
- Accuracy of calculation and data for region with $\chi_i < \chi_{i,NCLASS}$ under investigation

NSTX Results Review 2004 - S. Kaye

PF1A upgrade will allow stronger shaping

- PF1A coil is being modified for better control of triangularity at high elongation
- High triangularity combined with high elongation will permit 40% more current for fixed q
 - Alternatively higher q for the same current
- 100% non-inductively sustained scenario has been identified for target double null shape
 - Assumes functioning EBW current drive
- Will also test if RWM feedback can raise β_N
 - Important for increased bootstrap current

Shape evolution at high β on NSTX

Summary

- NSTX has made excellent progress
 - Shape control has been crucial
 - High κ
 - Pulse length increased 50% with 100% increase in β_t
 - $\beta_t \sim 39\%$
- MHD studies have identified important performance limiting modes
 - RWM
 - Error field modes
- Beginnings of single machine ST transport scalings developed
 - Intriguingly good ion confinement
- Planned upgrades should lead to continued improvements in performance