MHD, Transport and Boundary Studies and the Development of Integrated High-Performance Scenarios in NSTX

Supported by

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** Idaho NEL Johns Hopkins U Los Alamos NL Lawrence Livermore NL Lodestar MIT Nova Photonics, Inc. New York U **Old Dominion U** Oak Ridge NL PPPL PSI **Princeton U** Purdue U Sandia NL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

M.G. Bell Princeton Plasma Physics Laboratory for the NSTX Research Team

4th IAEA Technical Meeting on Spherical Tori & 14th International Workshop on Spherical Torus ENEA, Frascati 7 – 10 October 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

MHD Studies Have Focused on Maintaining High Normalized-β Using Midplane Correction Coils

NSTX

Coils powered by 3 Switching Power Amplifiers (3.5kHz, 1kA) – Apply n = 1 & 3 or 2 (4) fields

- · Experiments have attempted to optimize benefits of
 - Stabilization of external modes by conducting plates
 - Correction of intrinsic field errors which damp plasma rotation
 - Resonant Field Amplification and growth of Resistive Wall Modes

Correction of n = 3 Error Field Plus Feedback Control of n = 1 Mode Reliably Extends Duration of High- β_N Plasmas

- Correction of n = 3 intrinsic error field maintains toroidal rotation
- Resistive Wall Mode can develop at high normalized- β : terminates discharge
- Feedback on measured n = 1 mode reliably suppresses RWM growth
 - Limitations on time response and applied mode purity explored for ITER

M.G. Bell / 14th ST Workshop / Frascati / 081008

This Year, Compared Applied "Even Parity" to Previous "Odd Parity" Radial Field Perturbations

- Experiments determined that intrinsic n = 2 field errors are negligible in NSTX
 - No n = 2 amplitude or phase combination extended reference pulses
- Expect n = 2 to increase braking by neoclassical toroidal viscosity (NTV)

DNSTX

Applied n = 2 Field Produces Broader Non-Resonant Braking Profile than n = 3 Field

- n = 2 configuration has strong n = 4, but little n = 1 (resonant) component
- Recent experiment also shows stronger braking after lithium evaporation
 - Consistent with higher T_i and NTV in $1/v_i$ regime

Both n = 3 and n = 2 Applied Fields Affect ELM Behavior but Have Not Suppressed ELMs

- ELMs increase in width and roughly match frequency of applied field
- Calculations with IPEC show regions of significant island overlap near edge

• Also tried mixed n = 2 + 3 spectrum with similar results

NSTX

Change in ELM Behavior with RMP Results from Multiple ELMs/Filaments Coalescing

Experiments Have Studied 2/1 NTM Physics in High-β Plasmas

- Local mode drive $\propto \mu_0 \langle \vec{J} \cdot \vec{B} \rangle_e L_q / \langle B_\theta \rangle \propto \text{local } \beta_p$
- Flow shear variation achieved by different NBI and n = 3 braking
 - Correlation with flow velocity itself is weaker
- Trend likely due to dependence of Δ ' on local flow shear
 - Similar trends observed in co-/counter mix experiments in DIII-D

NSTX

DIII-D

Scaling Experiments Have Revealed Role of Electron Transport in NSTX Energy Confinement

ONSTX

Heating Electrons with RF Waves Drives Short-Wavelength Turbulence in Plasma Core

- Fast waves at high harmonics of ion-cyclotron frequeny (HHFW) heat electrons through electron Landau damping and TTMP
- Fluctuations measured by low-angle forward scattering of 280 GHz μ -waves

- Detected fluctuations in range $k_{\perp}\rho_e$ = 0.1 0.4 ($k_{\perp}\rho_s$ = 8 16) propagate in electron diamagnetic drift direction
 - Rules out Ion Temperature Gradient mode ($k_{\perp}\rho_{s}$ ~ 1) as source of turbulence
 - Reasonable agreement with linear gyrokinetic code (GS2) for Electron Temperature Gradient (ETG) mode onset

Electron Gyro-Scale Fluctuations Can Be Suppressed by Reversed Magnetic Shear in Plasma Core

• Shear-reversal produced by early NB heating during plasma current ramp

• Suppression of Electron Temperature Gradient (ETG) mode by shear-reversal and high T_e/T_i predicted by Jenko and Dorland, Phys. Rev. Lett **89** (2002)

ONSTX

M.G. Bell / 14th ST Workshop / Frascati / 081008

Now Investigating Role of High-Frequency MHD Modes in Core Electron Transport

- Observe "flat T_e" region in core of plasmas with high NBI power
- \Rightarrow Implies mechanism for electron transport *not* driven by T_e gradient
- Global Alfvén Eigenmodes (GAEs) driven by fast-ion pressure gradient a ٠ possible source

M.G. Bell / 14th ST Workshop / Frascati / 081008 D. Stutman, N. Gorelenkov, L. Delgado, N. Crocker, E. Belova 13

MHD Instabilities Affect Confinement of Fast Ions

- Density profile of fast ions (15 65 keV) deduced from Doppler-shifted D_{α} emission by energetic neutrals created by charge-exchange with NBI neutrals
- During TAE avalanches, measured Low-frequency (kink) activity fast-ion losses up to 30% redistributes fast ions outwards Can destabilize Compressional Consistent with neutron rate drop Alfvén Eigenmodes (CAEs) in - Profile remains peaked outboard midplane region Avalanche minn 150 a.u.] 100 200 P_{NB} N_f [a.u.] z⁺ 50 100 0 0 80 80 100 100 120 400 120 350 R [cm] R [cm] 300 140 290 140 300 280 270 250 260 t [ms] 160 250 t [ms] 160

M.G. Bell / 14th ST Workshop / Frascati / 081008

Measured Change in Low-k Turbulence Across H-mode Transitions in Ohmically Heated Plasmas

- Use fixed/swept frequency correlation reflectometer during period with monotonic density profile following H-mode transition
- Fluctuation characteristics change little except for a reduction in radial correlation length by factor 3 - 4

Momentum Diffusivity in H-mode Plasmas Does Not Show Clear Dependence on I_p or B_T

- Thermal transport does show ~neoclassical (B_{θ}) dependence
- Use transient n = 3 braking or NBI "blips" to perturb rotation profile
 - Decouple v_{tor} and ∇v_{tor} to separate diffusion and pinch terms, *but*
 - Analysis does not yet account for possible "residual" stress from turbulent wave/particle momentum interaction (*Diamond, Hahm, Gurcan; TTF07*)

Imaging of Plasma Edge Contributing to Understanding Transient Edge Phenomena (ELMs, Blobs)

Simulations of "blob" propagation in NSTX SOL reproduce measured characteristics

D. A. D'Ippolito , IAEA FEC, 2008

- **SOLT** code models curvature-driven turbulence with coupled mid-plane and divertor regions, including flows
- Includes calculation of synthetic diagnostic images for comparison with GPI data

Peak Heat Flux on Lower Divertor Can Be Reduced By Plasma Shaping

R. Maingi

Partial Divertor Detachment by Divertor Gas Puffing Reduces Peak Heat Flux Without Degrading Core

- Extended previous results to high-triangularity H-mode discharges
- Core radiation and carbon density reduced during partial detachment

NSTX is Exploring and Developing Lithium-Coated Plasma Facing Components

2005: Injected lithium pellets, 2 - 5 mg, into He discharges prior to D NBI shot
2006: LIThium EvaporatoR (LITER) deposited lithium on divertor between shots
2007: Enlarged nozzle, re-aimed at lower divertor to increase deposition rate
2008: Dual LITERs covered entire lower divertor; shutters interrupted lithium stream during plasmas; evaporated ~200g lithium (reloaded 3 times)

– Also used "lithium powder dropper" to introduce lithium through SOL

Solid Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

- Without ELMs, impurity accumulation increases P_{rad} and Z_{eff}

Improvement in Confinement with Lithium Mainly Through Broadening of Electron Temperature Profile

- Broader electron temperature profile reduces internal inductance *I*_i and inductive flux consumption in current flattop, despite higher Z_{eff}
- Lithium increases edge bootstrap current through higher p', lower collisionality

Lithium Coating by Dropping a Stream of Lithium Powder into SOL Produced Similar Benefits to LITER

- Lithium powder (~40µm) stabilized against rapid oxidation in air by surface coating of either Li₂CO₃ (<0.1%) or paraffin wax (<0.01% CH₂)
- Introduced by oscillating a piezo-electric diaphragm with a hole in the center on which the powder is piled
- Typical flow rates 5 40 mg/s: well tolerated by plasma

Midplane Radial-Field Control Coils Can *Induce* Repetitive ELMs in Lithium-Suppressed Plasmas

- n = 3 resonant magnetic perturbation applied
- 11ms duration pulse at 40Hz optimal for this shape (DN, κ =2.4, δ =0.8)

Optimized Plasma Shaping Can Increase β_P and Bootstrap Current Fraction at High β_T

- High elongation κ reduces $B_{P,av} = \mu_0 I_p / \int_C dI$, increases bootstrap current – Sustained $\kappa \ge 2.8$ for many t_{wall} by fast feedback
- Higher triangularity δ and proximity to conducting wall allows higher β_N
- Plasma rotation maintains stabilization beyond decay-time of wall current

n=3 Error Field Correction With n=1 RWM Feedback and Lithium Coating Extends High-β_N Discharges

NSTX

NSTX is Revealing New Physics in Toroidal Magnetic Confinement and Developing the Potential of the ST

- Extending the understanding of MHD stability at high β
 - Extending pulse length through active control of low-n modes
 - Investigating possibilities for ELM suppression and mitigation
 - Developing NTM physics and control techniques
- Investigating the physics of anomalous electron transport
 - Electron transport dominates as a result of ion-scale mode suppression
- Examining stability and effects of super-Alfvénic ions
 - Measuring transport due to spectrum of Alfvén eigenmodes
- Developing techniques to mitigate high heat fluxes on PFCs
 - Extreme flux expansion and creating radiative divertor
- Assessing the potential of lithium as a plasma facing material
 - Solid lithium coatings of PFCs reduce recycling, improve confinement
 - Liquid lithium divertor will be installed for experiments in 2009
- Making good progress towards goal of non-inductive sustainment

In 2009, NSTX Will Begin Investigating Liquid Lithium on Plasma Facing Components

Liquid Lithium Divertor (LLD)

NSTX

- Replace rows of graphite tiles in outer lower divertor with segmented plates
- Molybdenum surface on copper substrate with temperature control
 - Heated above Li melting point 180°C
 - Active heat removal to counteract plasma heating
- Initially supply lithium with LITER and lithium powder dropper
- Evaluate capability of liquid lithium to sustain deuterium pumping beyond capacity of solid film
- Upgrade to long-pulse capability will require method for core fueling
 - Compact Toroid injection or frozen deuterium pellets