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Successful operation of upgraded STs (NSTX-U/MAST-U) 
could provide basis for design, operation of ST-based FNSF 

• Fusion Nuclear Science Facility (FNSF) mission: 

– Provide continuous fusion neutron source to develop knowledge-base for 

materials and components, tritium fuel cycle, power extraction 
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• FNSF  CTF would complement ITER path to DEMO 

 

• Studying wide range of ST-FNSF configurations to identify 
advantageous features, incorporate into improved ST design 

M. Peng et al., IEEE/NPSS Paper S04A-2 - 24th SOFE Conf. (2011) 

M. Abdou et al. Fus. Technol. 29 (1996) 1 

• Investigating performance vs. device size 
– Require: Wneutron ≥ 1 MW/m2, test area ≥ 10 m2, volume ≥ 5 m3 
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ST-FNSF equilibrium inductance, elongation based 
on values achieved/anticipated in NSTX/NSTX-U 

• Most probable NSTX thermal 
pressure peaking ~ 1.7 – 2.2 
– If similar in NSTX-U/FNSF  full non-

inductive li ~ 0.45 – 0.7 (BS + NBI) 
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• NSTX A=1.7, li = 0.45 – 0.7  plasmas 

can operate stably at k ~ 2.7 – 2.9 

– Expect to improve n=0 control in NSTX-U 

– Anticipate k  3 possible in NSTX-U/FNSF 
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ST-FNSF free-boundary elongation is reduced with 
increasing li to match NSTX/NSTX-U trends 
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ST-FNSF operating point of fGreenwald = 0.8, H98y,2=1.2  
chosen to be at/near values anticipated for NSTX-U 

• H98y,2  1.2 accessed for 

a range of Greenwald 

fractions in NSTX 
– However, much more research 

needs to be carried out in NSTX-

U to determine if H = 1.2 can be 

achieved reliably 

– Note: H98y,2 ~ 1 would require 

much higher Paux (~1.8×) 
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• Need to assess feasibility 

of access to H98y,2 ~ 1.2 at 

k ~ 2.7-2.9 in NSTX-U 
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NSTX disruptivity data informs FNSF  
operating point with respect to global stability 

• Increased disruptivity for q* < 2.7 

– Significantly increased for q* < 2.5 

• Lower disruptivity for bN  = 4-6 

compared to lower bN 

– Higher bN increases fBS, broadens J 

profile, elevates qmin 

– Operation above no-wall limit aided by: 

• NBI co-rotation 

• Close-fitting conducting wall 

• Active error-field and RWM control 

• Strong shaping also important 

– S  q95 IP/aBT 

– S > 30 provides strongest stabilization 

– S > 22-25 good stability 

– S < 22 unfavorable 
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Increased device size provides modest increase in 
stability, but significantly increases T consumption 

• Scan R = 1m  2.2m (smallest FNSF  pilot plant with Qeng ~ 1) 

• Fixed average neutron wall loading = 1MW/m2 

• BT = 3T, A=1.7, k=3, H98 = 1.2, fGreenwald = 0.8 

• 100% non-inductive: fBS = 75-85% + NNBI-CD (ENBI=0.5MeV JT60-SA design) 
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• Larger R lowers bT & bN, increases q* 
 

• Comparable/higher bT and bN 

values already sustained in NSTX 
 

• Q = 1  3, Pfusion = 60MW  300MW 
 5× increase in T consumption 
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Beyond neutron wall loading and T breeding, FNSF 
study is also tracking electrical efficiency Qeng 
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Note: blanket  and auxiliary heating 
and current-drive efficiency + fusion 
gain largely determine Qeng 

Electricity produced     

Electricity consumed 

 th    =  thermal conversion efficiency 

aux  =  injected power wall plug efficiency 

Q =  fusion power / auxiliary power 
 

Mn    =  neutron energy multiplier 

Pn   = neutron power from fusion 
P     =  alpha power from fusion 

Paux   =  injected power (heat + CD + control) 
Ppump  =  coolant pumping power 
Psub   =  subsystems power 

Pcoils   =  power lost in coils (Cu) 
Pcontrol  =  power used in plasma or plant control 

      that is not included in Pinj 

Pextra  =  Ppump + Psub + Pcoils + Pcontrol 

FNSF assumptions (from Pilot study): 

• Mn = 1.1 
• Ppump = 0.03×Pth 
• Psub + Pcontrol = 0.04×Pth 

•  aux = 0.4 (presently unrealistically high) 
•  CD = ICDR0ne/PCD = 0.3 × 1020A/Wm2 

For more details see J. Menard, et al., Nucl. Fusion 51 (2011) 103014 
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High performance scenarios can access increased 
neutron wall loading and Qeng > 1 at large R 

• Decrease BT = 3T  2.6T, increase H98 = 1.2  1.5 

• Fix bN = 6, bT = 35%, q* = 2.5, fGreenwald varies: 0.66 to 0.47 

 

•Size scan:  Q increases from 3 (R=1m) to 14 (R=2.2m) 

•Average neutron wall loading increases from 1.8 to 3 MW/m2  (not shown) 

•Smallest ST for Qeng ~ 1 is R=1.6m  requires very efficient blankets 
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Note:  Outboard PF coils 

are superconducting 

Qeng  
Pelectric produced 

Pelectric consumed 
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Cost of T and need to demonstrate self-sufficiency 
motivate analysis of tritium breeding ratio (TBR) 

• Example costs of T w/o breeding at $0.1B/kg for R=1  1.6m 
– FNS mission: 1MWy/m2   $0.33B  $0.9B 

– Component testing: 6MWy/m2  $2B  $5.4B 

• Implications: 
– TBR << 1 likely affordable for FNS mission with R ~ 1m 

– Component testing arguably requires TBR approaching 1 for all R 
 

• Performed initial analysis of R=1.6m FNSF using conformal 
and straight blankets, ARIES-ST neutron source profiles: 
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R=1.6m TBR calculations highlight importance of  
shells, penetrations, and top/bottom blankets 

Extended 

conformal blanket 

TBR = 1.1 

Conformal blanket 

TBR = 1.046 

TBR = 1.02 
10 NBI penetrations 

NBI penetration at midplane 

TBR = 1.07 

Stabilizing 

shell  

+ 3cm thick 

stabilizing shell 

 

Straight blanket  

TBR = 0.8  

Extended  

straight blanket 

TBR = 1.0  TBR = 1.047  

Straight blanket 

with flat top  

Extended conformal + 3cm shell + NBI 
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FNSF center-stack can build upon NSTX-U 
design, incorporate NSTX stability results 
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•Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together) 

– Coolant paths: gun-drilled holes or NSTX-U-like grooves in wedge + welded tube 

•Bitter-plate divertor PF magnets in ends of TF enable high triangularity 

– NSTX data:  High d > 0.55 and shaping S  q95IP/aBT > 25 minimizes disruptivity 

– Neutronics:  MgO insulation can withstand lifetime (6 FPY) radiation dose 
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Divertor PF coil configurations identified to achieve  
high d, maintain peak divertor heat flux ≤ 10MW/m2  

 

• qpeak ~ 10MW/m2 

• Flux expansion = 15-25 

• 1/sin(qplate) = 2-3 

• Rstrike = 1.15m, dx ~ 0.55 

Snowflake 

Field-line angle of incidence at strike-point = 1˚ 

Conventional Super-X 

 

• qpeak ~ 3MW/m2 

• Flux expansion = 2 

• 1/sin(qplate) = 15 

• Rstrike = 2.6m, dx ~ 0.56 

• qpeak ~ 10MW/m2 

• Flux expansion = 40-60 

• 1/sin(qplate) = 1-1.5 

• Rstrike = 1.05m, dx ~ 0.62 
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Combined super-X + snowflake divertor 
configuration has many attractive features 
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li = 0.40 k = 3.0 

li = 0.82 k = 2.55 

• 2nd X-point/snowflake lowers BP, increases line-length 

• Outboard PF coils shielded by blankets  can be SC 

• Possible location for T breeding to increase TBR 

• PF coil design supports wide range of li values 

(0.4 – 0.8) with fixed strike-point location/region 

and controllable B-field angle of incidence (0.5-5˚) 

 

• Divertor coils in TF coil ends for equilibrium, high d 

• In-vessel coils not-required for shaping – will be 

used for vertical control (to be studied in future) 

• Increased strike-point radius to reduce 

B and q||, further increase line-length 

• Strike-point PFCs shielded by blankets 

 

Normally conducting PF coil features: 



17th International ST Workshop – ST-FNSF (Menard) 

Super-X  ~3× reduction in qpeak: 10  3MW/m2 for 
fixed radiation fraction and angle of incidence 
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R=1.6 device configuration with Super-X 

S/C PF coils 

housed in VV 

upper lid 

VV outer shell 

expanded to add 

shield material 

S/C PF coils 

housed in VV 

lower shell 

structure 

S/C PF coils 

pairs located 

in common 

cryostat 

Angled DCLL 

concentric lines 

to external header 

Reshaped 

TF leads  

Vertical maintenance approach Design features 
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Summary 
• Present STs (NSTX, MAST) providing preliminary physics 

basis for ST-FNSF performance studies 

– Upgraded devices will provide more extensive and definitive basis 
 

• Neutron wall loading of 1MW/m2 feasible for range of major 

radii for b and H98 values at/near values already achieved 

– High wall loading and/or pilot-level performance require bN ~ 6 and H98 

~ 1.5 which are at/near maximum values attained in present STs 
 

• TBR near 1 possible if top/bottom neutron losses minimized 

– TBR ≥ 1 may only be possible for R ≥ 1.6m – under active investigation  

• Divertor PF coils in ends of TF bundle enable high d, shaping 

• Conventional, snowflake, super-X divertors investigated, PF 

coils incorporated to reduce peak heat flux << 10MW/m2 

• Vertical maintenance strategies for either full and/or toroidally 

segmented blankets being investigated 
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Future work 

• Physics basis for operating points 
– Perform sensitivity study of achievable performance vs. baseline 

configuration assumptions: A, k, H98y,2, ST vs. tokamak tE scaling 

– TRANSP calculations of NBI heating, current drive, neutron production 

• Performance vs. device size 
– Could/should overall machine configuration change at smaller R? 

• Example questions: could/should vessel take more load? 

– Is there sufficient shielding for divertor PF coils at smaller R?   

• Tritium breeding ratio calculations 
– Extend calculations to smaller R 

– Include 3D effects and final machine layout 

• Maintenance strategies 
– Assess space/lift requirements above machine for vertical maintenance 
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Backup 
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Boundary shape parameters vs. internal inductance 

A = 1.81.7 at higher li 
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Glidcop 

plates  

Insulator  

Bitter coil insert for divertor coils in ends of TF 
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Neutronics analysis indicates organic  
insulator for divertor PF coils unacceptable 
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MgO insulation appears to have good  
radiation resistance for divertor PF coils 

• UW analysis of divertor PFs 

– 1.8x1012 rad = 1.8x1010 Gy at 

6FPY for Pfus = 160MW 

• Pilot mission for R=1.6m: 

– Pfus = 420MW vs. 160MW  

2.6x higher  4.7x1010 Gy 

– Even for Pilot mission, dose is 

< limit of 1011 Gy 

• Limiting factor may be Cu 

• Need to analyze CS lifetime 

• Revisit option for multi-turn 

TF and small OH solenoid 
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