ST-FNSF Mission and Performance Dependence on Device Size

J. Menard¹

T. Brown¹, J. Canik², L. El-Guebaly³, S. Gerhardt¹, A. Jaber³, S. Kaye¹, E. Meier⁴, L. Mynsberge³, C. Neumeyer¹, M. Ono¹, R. Raman⁵, S. Sabbagh⁶, V. Soukhanovskii⁴, P. Titus¹, G. Voss⁷, R. Woolley¹, A. Zolfaghari¹

¹Princeton Plasma Physics Laboratory, Princeton, NJ 08543
 ²Oak Ridge National Laboratory, Oak Ridge, TN, USA
 ³University of Wisconsin, Madison, WI, USA
 ⁴Lawrence Livermore National Laboratory, Livermore, CA, USA
 ⁵University of Washington, Seattle, WA, USA
 ⁶Columbia University, New York, NY, USA
 ⁷Culham Centre for Fusion Energy, Abingdon, Oxfordshire, UK

17th International Spherical Torus Workshop University of York 16-19 September 2013

This work supported by the US DOE Contract No. DE-AC02-09CH11466

- Motivation for study
- Physics basis for operating points
- Performance vs. device size
- Tritium breeding ratio calculations
- Divertor poloidal field coil layout and design
- Power exhaust calculations
- Maintenance strategies
- Summary

Successful operation of upgraded STs (NSTX-U/MAST-U) could provide basis for design, operation of ST-based FNSF

- Fusion Nuclear Science Facility (FNSF) mission:
 - Provide continuous fusion neutron source to develop knowledge-base for materials and components, tritium fuel cycle, power extraction
- FNSF → CTF would complement ITER path to DEMO

- Studying wide range of ST-FNSF configurations to identify advantageous features, incorporate into improved ST design
- Investigating performance vs. device size
 - Require: $W_{neutron} \ge 1 \text{ MW/m}^2$, test area $\ge 10 \text{ m}^2$, volume $\ge 5 \text{ m}^3$

M. Abdou et al. Fus. Technol. 29 (1996) 1

- Motivation for study
- Physics basis for operating points
- Performance vs. device size
- Tritium breeding ratio calculations
- Divertor poloidal field coil layout and design
- Power exhaust calculations
- Maintenance strategies
- Summary

ST-FNSF equilibrium inductance, elongation based on values achieved/anticipated in NSTX/NSTX-U

- Most probable NSTX thermal pressure peaking ~ 1.7 2.2
 - If similar in NSTX-U/FNSF → full noninductive I_i ~ 0.45 – 0.7 (BS + NBI)
- NSTX A=1.7, $I_i = 0.45 0.7$ plasmas can operate stably at $\kappa \sim 2.7 2.9$
 - Expect to improve n=0 control in NSTX-U
 - Anticipate $\kappa \rightarrow 3$ possible in NSTX-U/FNSF

ST-FNSF free-boundary elongation is reduced with increasing l_i to match NSTX/NSTX-U trends

¹⁷th International ST Workshop – ST-FNSF (Menard)

ST-FNSF operating point of $f_{Greenwald} = 0.8$, $H_{98y,2}=1.2$ chosen to be at/near values anticipated for NSTX-U

- H_{98y,2} → 1.2 accessed for a range of Greenwald fractions in NSTX
 - However, much more research needs to be carried out in NSTX-U to determine if H = 1.2 can be achieved reliably
 - Note: H_{98y,2} ~ 1 would require much higher P_{aux} (~1.8×)

 Need to assess feasibility of access to H_{98y,2} ~ 1.2 at κ ~ 2.7-2.9 in NSTX-U

NSTX disruptivity data informs FNSF operating point with respect to global stability

- Increased disruptivity for $q^* < 2.7$
 - Significantly increased for $q^* < 2.5$
- Lower disruptivity for $\beta_N = 4-6$ compared to lower β_N
 - $\begin{array}{l} \text{Higher } \beta_{\text{N}} \text{ increases } f_{\text{BS}}, \text{ broadens } J \\ \text{profile, elevates } q_{\text{min}} \end{array}$
 - Operation above no-wall limit aided by:
 - NBI co-rotation
 - Close-fitting conducting wall
 - Active error-field and RWM control
- Strong shaping also important
 - $S \equiv q_{95} I_P / a B_T$
 - S > 30 provides strongest stabilization
 - S > 22-25 good stability
 - S < 22 unfavorable

- Motivation for study
- Physics basis for operating points
- Performance vs. device size
- Tritium breeding ratio calculations
- Divertor poloidal field coil layout and design
- Power exhaust calculations
- Maintenance strategies
- Summary

Increased device size provides modest increase in stability, but significantly increases T consumption

- Scan R = 1m \rightarrow 2.2m (smallest FNSF \rightarrow pilot plant with Q_{eng} ~ 1)
- Fixed average neutron wall loading = 1MW/m²
- $B_T = 3T$, A=1.7, $\kappa=3$, $H_{98} = 1.2$, $f_{Greenwald} = 0.8$
- 100% non-inductive: $f_{BS} = 75-85\% + NNBI-CD (E_{NBI}=0.5MeV JT60-SA design)$

Beyond neutron wall loading and T breeding, FNSF study is also tracking electrical efficiency Q_{eng}

High performance scenarios can access increased neutron wall loading and Q_{eng} > 1 at large R

- Decrease $B_T = 3T \rightarrow 2.6T$, increase $H_{98} = 1.2 \rightarrow 1.5$
- Fix $\beta_N = 6$, $\beta_T = 35\%$, $q^* = 2.5$, $f_{Greenwald}$ varies: 0.66 to 0.47

Size scan: Q increases from 3 (R=1m) to 14 (R=2.2m)
Average neutron wall loading increases from 1.8 to 3 MW/m² (not shown)
Smallest ST for Q_{eng} ~ 1 is R=1.6m → requires very efficient blankets

- Motivation for study
- Physics basis for operating points
- Performance vs. device size
- Tritium breeding ratio calculations
- Divertor poloidal field coil layout and design
- Power exhaust calculations
- Maintenance strategies
- Summary

Cost of T and need to demonstrate self-sufficiency motivate analysis of tritium breeding ratio (TBR)

- Example costs of T w/o breeding at \$0.1B/kg for R=1 \rightarrow 1.6m \$0.33B → \$0.9B
 - FNS mission: 1MWy/m²
 - Component testing: $6MWy/m^2$ $$2B \rightarrow $5.4B$
- Implications:
 - TBR << 1 likely affordable for FNS mission with R ~ 1m
 - Component testing arguably requires TBR approaching 1 for all R
- Performed initial analysis of R=1.6m FNSF using conformal and straight blankets, ARIES-ST neutron source profiles:

R=1.6m TBR calculations highlight importance of shells, penetrations, and top/bottom blankets

- Motivation for study
- Physics basis for operating points
- Performance vs. device size
- Tritium breeding ratio calculations
- Divertor poloidal field coil layout and design
- Power exhaust calculations
- Maintenance strategies
- Summary

FNSF center-stack can build upon NSTX-U design, incorporate NSTX stability results

Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)

- Coolant paths: gun-drilled holes or NSTX-U-like grooves in wedge + welded tube

•Bitter-plate divertor PF magnets in ends of TF enable high triangularity

- **NSTX data:** High δ > 0.55 and shaping S = q₉₅I_P/aB_T > 25 minimizes disruptivity
- Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose

- Motivation for study
- Physics basis for operating points
- Performance vs. device size
- Tritium breeding ratio calculations
- Divertor poloidal field coil layout and design
- Power exhaust calculations
- Maintenance strategies
- Summary

Divertor PF coil configurations identified to achieve high δ , maintain peak divertor heat flux \leq 10MW/m²

Field-line angle of incidence at strike-point = 1°

Combined super-X + snowflake divertor configuration has many attractive features

Super-X $\rightarrow \sim 3 \times$ reduction in q_{peak}: 10 $\rightarrow 3$ MW/m² for fixed radiation fraction and angle of incidence

¹⁷th International ST Workshop – ST-FNSF (Menard)

R=1.6 device configuration with Super-X

Summary

 Present STs (NSTX, MAST) providing preliminary physics basis for ST-FNSF performance studies

- Upgraded devices will provide more extensive and definitive basis

- Neutron wall loading of $1MW/m^2$ feasible for range of major radii for β and H₉₈ values at/near values already achieved
 - High wall loading and/or pilot-level performance require $\beta_N \sim 6$ and $H_{98} \sim 1.5$ which are at/near maximum values attained in present STs
- TBR near 1 possible if top/bottom neutron losses minimized
 TBR ≥ 1 may only be possible for R ≥ 1.6m under active investigation
- Divertor PF coils in ends of TF bundle enable high δ , shaping
- Conventional, snowflake, super-X divertors investigated, PF coils incorporated to reduce peak heat flux << 10MW/m²
- Vertical maintenance strategies for either full and/or toroidally segmented blankets being investigated

Future work

• Physics basis for operating points

- Perform sensitivity study of achievable performance vs. baseline configuration assumptions: A, κ , H_{98y,2}, ST vs. tokamak τ_E scaling
- TRANSP calculations of NBI heating, current drive, neutron production

• Performance vs. device size

- Could/should overall machine configuration change at smaller R?
 - Example questions: could/should vessel take more load?
- Is there sufficient shielding for divertor PF coils at smaller R?
- Tritium breeding ratio calculations
 - Extend calculations to smaller R
 - Include 3D effects and final machine layout
- Maintenance strategies
 - Assess space/lift requirements above machine for vertical maintenance

Backup

Boundary shape parameters vs. internal inductance

Bitter coil insert for divertor coils in ends of TF

Neutronics analysis indicates organic insulator for divertor PF coils unacceptable

MgO insulation appears to have good radiation resistance for divertor PF coils

Fig. 3 Cross section of MIC

Table 1: Comparison of radiation resistant			
	Organic		Inorganic
Insulation	Epoxy	Polyimide	MgO
Resistant	>10 ⁷ Gy	>10 ⁹ Gy	>10 ¹¹ Gy

R&D of a Septum Magnet Using MIC coil

Kuanjun Fan^{1,A)}, Hiroshi Matsumoto^{A)}, Koji Ishii^{A)}, Noriyuki Matsumoto^{B)} ^{A)} High Energy Accelerator Research Organization (KEK) 1-1 OHO, Tsukuba, Ibaraki, 305-0801, Japan

B) 2NEC/Token

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

- UW analysis of divertor PFs
 - 1.8×10^{12} rad = 1.8×10^{10} Gy at 6FPY for P_{fus} = 160MW
- Pilot mission for R=1.6m:
 - P_{fus} = 420MW vs. 160MW → 2.6x higher → 4.7x10¹⁰ Gy
 - Even for Pilot mission, dose is
 < limit of 10¹¹ Gy
- Limiting factor may be Cu
- Need to analyze CS lifetime
- Revisit option for multi-turn
 TF and small OH solenoid