

Overview of Research Plans for NSTX Upgrade*

Coll of Wm & Mary Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U**Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Jon Menard (PPPL)

NSTX-U Program Director

17th International Spherical Torus Workshop University of York 16-19 September 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

NSTX Upgrade mission elements

 Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)

 Develop solutions for the plasmamaterial interface challenge

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop ST as fusion energy system

NSTX Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

					Low-A Power Plants
Parameter	NSTX	NSTX Upgrade	Fusion Nuclear Science Facility	Pilot Plant	ARIES-ST (A=1.6)
Major Radius R_0 [m]	0.86	0.94	1.3	1.6-2.2	
Aspect Ratio R_0/a	≥1.3	≥1.5	≥1.5	≥1.7	
Plasma Current [MA]	1	2	4-10	11–18	
Toroidal Field [T]	0.5	1	2-3	2.4-3	
Auxiliary Power [MW]	≤8	≤ 19 *	22-45	50-85	JUST (A=1.0)
P/R [MW/m]	10	20	30-60	70-90	
P/S [MW/m ²]	0.2	0.4-0.6	0.6-1.2	0.7-0.9	
Fusion Gain Q			1-2	2-10	

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

- Non-inductive start-up, ramp-up, sustainment
- Confinement scaling (esp. electron transport)
- Stability and steady-state control
- Divertor solutions for mitigating high heat flux

NSTX-U aims to access performance levels of next-steps, approach Pilot-Plant regimes

Requirements for ST / tokamak next-steps:

- Full non-inductive (NI) current drive for steady-state operation
 > ST requires NI start-up/ramp-up
- High confinement to minimize auxiliary heating, device size
- Sustained high β to minimize magnet size, forces, power
- Divertor/first-wall survival with intense power/particle fluxes

NSTX Upgrade incorporates 2 new capabilities:

- 2x higher CD efficiency from larger tangency radius R_{TAN}
- 100% non-inductive CD with core q(r) profile controllable by:
 - NBI tangency radius
 - Plasma density, position (not shown)

W NSTX-U

Proposed longer-term facility enhancements: (2014 - 2018)

- Improved particle control tools
 - Control deuterium inventory and trigger rapid ELMs to expel impurities - Access low v^* , understand role of Li
- Upward Lievaporator

Actively-supplied, capillary-restrained, gas-cooled LM-PFC

Off midplane

MGI

mid-

plane MGI

- Midplane + off-midplane Disruption avoidance, mitigation non-axisymmetric control coils (NCC) - 3D sensors & coils, massive gas injection Extended low-f MHD sensor set • ECH to raise start-up plasma T_e to MGI in PFR enable FW+NBI+BS I_P ramp-up 1-2MW 28 GHz gyrotron - Also EBW-CD start-up, sustainment Structural Material (e.g. F82H steel)
- Begin transition to high-Z PFCs, assess flowing liquid metals

- Plus divertor Thomson, spectroscopy

High-Z tiles

Porous or textured surface Liquid Lithium

Coolant (e.g. He or s-CO)

Incident

Plasma

NSTX-U team developed 5 year plan for FY2014-18 Highest priority goals:

- 1. Demonstrate 100% non-inductive sustainment at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

5 year plan successfully peer-reviewed in May 2013

Highest priority research goals for NSTX-U:

- 1. Demonstrate 100% non-inductive sustainment
- 2. Access reduced ν^{*} and high- β combined with ability to vary q and rotation
- 3. Develop/understand non-inductive start-up, ramp-up (overdrive) for ST-FNSF with small/no solenoid
- 4. Develop high-flux-expansion "snowflake" divertor + radiative detachment to mitigate high heat fluxes

5. Assess high-Z + liquid Li plasma facing components

TRANSP simulations support goal of accessing and controlling 100% non-inductive plasma operation

NSTX achieved:

- Maximum sustained non-inductive fractions of 65% w/NBI at $I_P = 0.7$ MA
- 70-100% non-inductive transiently with HHFW current-drive + bootstrap

NSTX-U projections (TRANSP):

• 100% non-inductive at $I_P = 0.6-1.3MA$ for range of power, density, confinement

I_P=1 MA, B_T=1.0 T, P_{NBI}=12.6 MW

Advanced Scenarios and Control 5 Year Goals:

- 100% non-inductive operation
- Lower v*: high-current, partialinductive scenarios, extend to long-pulse
- Implement axisymmetric control algorithms and tools
 - Current and rotation profile control
 - Improved shape and vertical position control
 - Heat flux control for high-power scenarios
- Develop disruption avoidance by controlled plasma shutdown

Rotation Profile Actuators

Torque Profiles From 6 Different NB Sources

Also torques from 3D fields

Rapid TAE avalanches could impact NBI current-drive in advanced scenarios for NSTX-U, FNSF, ITER AT

🔘 NSTX-U

Energetic Particle 5 Year Goals:

- Develop predictive tools for projections of *AE-induced fast ion transport in FNSF and ITER
 60 Bt=0.81T
 60 Bt=0.81T
 - Vary fast-ion instability drive using NBI, q, rotation, 3D fields
 - Measure *AE mode structure
 - Magnetics, BES, reflectometry
 - Characterize fast ion transport vs. *AE type

- Compare data to simulation, develop reduced models
 - ORBIT, NOVA-K, M3D-K, HYM to understand mode-induced transport
- Assess requirements for fast-ion phase-space engineering

- AE spectroscopy, also stability control using NBI, q, rotation, 3D fields

NSTX/NSTX-U is making leading contributions to high- β_N stability physics, and assessing possible 3D coil upgrades

- n=1 MHD spectroscopy: high β_N can be more stable
 - Combination of rotation and current profile effects at high beta
 - Important for advanced scenarios
- Identified several off-midplane 3D coil sets favorable for profile and mode control
 - ~40% increase in n=1 RWM β_{active} / $\beta_{no-wall}$
 - ~5x reduction in n=1 EF resonant torque
 - ~10-100x variation in ratio of nonresonant to resonant n=3 torque in edge
 - Important for control, understanding of RMP ELM control, NTV rotation profile control

Full

2x6 odd

NSTX has also made leading contributions to disruption warning research

- Disruption warning algorithms:
 - Based on sensors + physicsbased variables (not neural net)
 - < 4% missed, 3% false positives</p>
 - ITER requires 95-98% prediction success for VDE, thermal quench
 - Will assess applicability to ITER through ITPA Joint Activity
 - Will also assess for ST-FNSF
- Will use to trigger ramp-down and/or mitigation in NSTX-U

Macroscopic Stability 5 Year Goals:

- Study effects of reduced v^* , q and rotation on LM, RWM, NTM
- Test state-space control for EF, RWM for ITER, next-steps
- Assess 3D field effects to provide basis for optimizing stability through rotation profile control by 3D fields

- EF penetration, rotation damping, ELM triggering and suppression

- Understand disruption dynamics, develop prediction and detection, avoidance, mitigation
 - Enhance measurements of disruption heat loads, halos
 - Develop novel particle delivery techniques for mitigation:
 - MGI in private-flux-region (PFR), electromagnetic particle injector

Beginning to test/utilize transport models to predict NSTX temperature profiles, identify possible missing physics

- NSTX H-modes showed broadening of T_e profile as B_T was increased
 - Similar broadening trend observed with increased lithium deposition
 - $B_T \tau_E$ scales as ~1/v* in both datasets
- Utilizing neoclassical + drift wave models to simulate NSTX T_i and T_e profiles (collaboration with GA)
 - Need model for χ in edge region
 - Discrepancy in core T_e prediction for beam-heated H-modes

- Over-prediction of core T_e in NSTX may be due to transport from GAE/CAE modes not included in gyro-Landau-fluid model

Transport and Turbulence 5 Year Goals:

- Characterize H-mode global energy confinement scaling in the lower collisionality regime of NSTX-U
- Identify modes causing anomalous electron thermal, momentum, particle/impurity transport
 - Exploit scaling dependencies of modes
 - Example: μ -tearing $\chi_e \sim \nu^1$, ETG $\chi_e \sim \nu^0$
 - Relate predicted turbulence to data:
 - Low-k (BES), δ B (polarimetry), high k_r & k_{θ} (µ-wave)
 - Builds on identification of ETG w/ novel high-k_r scattering in NSTX
- Establish and validate reduced transport models

New high-k scattering

Highest priority research goals for NSTX-U:

- 1. Demonstrate 100% non-inductive sustainment
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation
- 3. Develop/understand non-inductive start-up, ramp-up (overdrive) for ST-FNSF with small/no solenoid
- 4. Develop high-flux-expansion "snowflake" divertor + radiative detachment to mitigate high heat fluxes

5. Assess high-Z + liquid Li plasma facing components

Simulations support non-inductive start-up/ramp-up strategy

- TSC code (2D) successfully simulates CHI $I_{\rm P}$ ~200kA achieved in NSTX

- TSC + tools included in 5 year plan support CHI I_P → 400kA in NSTX-U
 - Higher injector flux, toroidal field, CHI voltage
 - 1MW 28GHz ECH (increases T_e)

- TRANSP: NSTX-U more tangential NBI → 3-4x higher CD at low I_P (0.4MA)
- TSC: non-inductive ramp-up from 0.4MA to 1MA possible w/ BS + NBI

 But, RF heating (ECH and/or HHFW) of CHI likely required to couple to NBI

HHFW can efficiently heat low IP targets for plasma start-up

- NSTX high-harmonic fast-wave (HHFW) antenna will also be utilized on NSTX-U
 - 12 strap, 30MHz, $P_{RF} \le 6MW$

T_e(0)=3keV RF-heated H-mode at

 $I_P = 300$ kA with only $P_{RF} = 1.4$ MW

– HHFW: highest ST $T_e(0) \sim 6 \text{keV}$

Non-inductive fraction ≥ 70%
– f_{BS} ~50%, f_{RFCD} ~ 20-35%

Start-up/Ramp-up + RF Heating/Current Drive Goals:

- Test higher-current CHI start-up (~400kA)
- Test NBI + bootstrap current overdrive/ramp-up
- Develop HHFW and EC heating for fully noninductive plasma current start-up and ramp-up
 - Extend HHFW to higher power (3-4MW), demonstrate HHFW-driven 100% non-inductive at 300-400kA
 - Goal: maintain I_P to confine 2^{nd} NBI fast-ions
 - Use ECH (~1MW, 28GHz), then HHFW to increase T_e of CHI plasmas for NBI
 - Test high-power EBW to generate startup current - builds on MAST results
- Validate advanced RF codes for NSTX-U, predict RF performance in ITER and FNSF

Highest priority research goals for NSTX-U:

- 1. Demonstrate 100% non-inductive sustainment
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation
- 3. Develop/understand non-inductive start-up, ramp-up (overdrive) for ST-FNSF with small/no solenoid
- 4. Develop high-flux-expansion "snowflake" divertor + radiative detachment to mitigate high heat fluxes
- 5. Assess high-Z + liquid Li plasma facing components

Snowflake divertor effective for heat flux mitigation

- NSTX: can reduce heat flux by 2-4 × via partial detachment
- Snowflake \rightarrow additional x-point near primary x-point
 - NSTX: High flux expansion = 40-60 lowers incident q_{\perp}
 - Longer field-line-length promotes temperature drop, detachment

Boundary Physics, SOL/Divertor, PMI 5 Year Goals:

- Assess, optimize, control pedestal structure, transport, stability
- Assess and control divertor heat fluxes
 - Measure SOL widths at lower v, higher B_T , I_P , P_{SOL}
 - Compare data to fluid and gyro-kinetic models
 - Assess, control, optimize snowflake/X-divertor
 - Develop highly-radiating divertor w/ feedback control
 - Assess impact of high-Z tile row(s) on core impurities
- Establish, compare particle control methods
 - Validate cryo-pump physics design, assess density control
 - Compare cryo to lithium coatings for n_e , impurity, v^* control
- Explore Li/liquid-metal plasma material interactions

 Li surface-science, continuous vapor-shielding, material migration and evolution, lab R&D: flowing Li loops, capillary-restrained Li surfaces

Lithium Granule Injector (LGI) developed for NSTX is promising tool for pedestal control and scenario optimization

Time (ms)

- Successful EAST collaboration
 - Demonstrated LGI ELM-pacing at 25 Hz with nearly 100% triggering reliability
 - Capable of up to 1 kHz injection
- LGI will be tested on NSTX-U for high-frequency ELM pacing
 - Possible density control technique:
 - Combine Li coatings for D pumping with LGI for ELM-expulsion of carbon
 - Goal: reduce Z_{eff} to ~2-2.5
 - Injection of Li granules could also potentially replenish PFC Li coatings
- JET/ITER: potentially interested in testing Be granules for ELM pacing

Summary: NSTX-U aims to carry out leading research in support of FNSF/next-steps and ITER

- Non-inductive sustainment: NSTX-U aims to be the ST leader, will complement AT approach (DIII-D, KSTAR, EAST)
- Aim to make major advancements in transport understanding: Low v^* + high β + turbulence diagnostics unique in world
- NSTX-U will advance non-inductive start-up/ramp-up using unique combination of helicity injection + RF + NBI techniques
- With MAST-U, STs will lead development of novel divertors:
 - Snowflake / X-divertor, Super-X
 - NSTX-U aiming to lead development of replenishable / liquid metal PFCs

Backup

NSTX-U internal component staging supports goal to assess compatibility of high τ_E and β + 100% NICD with metallic PFCs

Base budget case

Nominal 2014-18 5 year plan steps for implementation of cryo-pump + high-Z PFCs + LLD

🔘 NSTX-U

17th International ST Workshop – NSTX-U Research Plans (Menard)

NSTX-U internal component staging supports goal to assess compatibility of high τ_E and β + 100% NICD with metallic PFCs

WNSTX-U

17th International ST Workshop – NSTX-U Research Plans (Menard)

Initiate comparative assessment of high-Z and liquid metal PFCs for long-pulse high-power-density next-step devices

MP Thrusts:

- 1. Understand Li surface-science at extended PFC operation
 - "Atoms to tokamaks" collaboration with PU
 - Materials Analysis Particle Probe (MAPP) (Purdue - J.P. Allain, 2010 ECRP) to identify in-situ
 - between-shot surface composition ($LTX \rightarrow NSTX-U$)
- 2. Assess tokamak-induced material migration and evolution
 - QCMs, marker-tiles, MAPP + QCM for shot-to-shot analysis of migration
- 3. Establish the science of continuous vapor-shielding
 - Continue studies of Li vapor-shielding in linear plasma device Magnum-PSI
 - Extend Magnum results to NSTX-U

MAPP capabilities:

LEISS

Up to 4 samples exposed

DRS

TDS

Magnum-PSI collaboration: M. Jaworski, T. Abrams (grad student) (PPPL)

• Lab-based R&D: flowing Li loops, capillary-restrained Li surfaces

Plasma initiation with small or no transformer is unique challenge for ST-based Fusion Nuclear Science Facility

NSTX-U goal staging: first establish ST physics + scenarios, transition to long-pulse + PMI integration (5YP incremental)

WNSTX-U

17th International ST Workshop – NSTX-U Research Plans (Menard)

10 year plan tools with 5YP incremental funding 1.1 × (FY2012 + 2.5% inflation)

17th International ST Workshop – NSTX-U Research Plans (Menard)

5 year plan tools with 5YP base funding (FY2012 + 2.5% inflation)

WNSTX-U

17th International ST Workshop – NSTX-U Research Plans (Menard)

NSTX-U 5 year plan aims to develop ST physics and scenario understanding necessary for assessing ST viability as FNSF

WNSTX-U

17th International ST Workshop – NSTX-U Research Plans (Menard)