

Supported by

Suppression of TAE and GAE with HHFW heating

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

E. D. Fredrickson Deyong Liu, Neal Crocker, Shige Kubota, Gerrit Kramer, Nikolai Gorelenkov, Roscoe White and the NSTX Research Team

presented by N. Bertelli

18th Int. ST Workshop, Princeton University Nov. 3-6, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science

Introduction

- This talk reports on observations made during a High Harmonic Fast Wave RF heating experiment to study power deposition and current drive using a 300 kA Helium plasma as target.
- There were 12 shots with 2MW of NBI plus up to 3MW of HHFW heating with various power, timing and phasing of the RF.
 - There is one NBI-only shot which is used as reference.
- Generally, the HHFW heating suppressed *all* fast-ion driven activity fishbones, TAE, GAE.
- Neutron rate, NPA data show no indication of excessive fast ion losses with HHFW.
- Other, later experiments, were lower power, not as clear.

3(ish) MW of High-harmonic Fast Wave (HHFW) heating suppresses both TAE, CAE/GAE, & fishbone activity

🔘 NSTX-U

18th Int. ST Workshop, Princeton University – HHFW suppression of *AE, Fredrickson (Nov 3-6, 2015)

3(ish) MW of High-harmonic Fast Wave (HHFW) heating suppresses both TAE and GAE (fishbone) activity

- TAE and CAE/GAE excited with 2MW of NBI heating, but both TAE and GAE suppressed with HHFW.
- Both TAE and CAE/GAE reappear shortly after HHFW heating ends.
- HHFW, primarily for heating thermal electrons, also heats beam ions.
- RF-heating affect similar to energy diffusion – should suppress chirping.

GAE not suppressed immediately, but question is why!

- Significant fast ion pump-out with HHFW? But no neutron rate, stored energy drop?
- Phase-space redistribution by HHFW? But, for TAE/hfAE/f.b.?
- Direct suppression? No existing models.
- Equilibrium changes (not in what is measured).
- What can we look at to answer these questions?

Similar suppression of chirping, then complete suppression of modes also seen for TAE

- Long frequency chirps are mostly suppressed in the first 20 ms of HHFW.
- Mode amplitude is also reduced.
- Mechanism for suppression of modes after 0.25s not clear, TAE should be excited by a broad range of fast ions.
- However, changes to equilibrium parameters (T_e, n_e, T_i and rotation) relatively small.
- Possibly related to same mechanism as ECH stabilization of rsAE seen on DIII-D.

TAE + fishbones reappear after HHFW ends

- Also, n=1 TAE mostly gone, but a little more n=4 TAE.
- Strong TAE chirping is also mostly absent – chirping correlated with elevated q(0)?
- TAE peak amplitude is also lower and without strong frequency chirps.
- TAE reappear after HHFW ends, but not immediately.
- Peak mode amplitude doesn't quite recover to no-RF case, and fishbones are more feeble.

TAE avalanches rare for $<\beta_{fast}>/<\beta_{total}> < 0.3$, Quiescent plasmas are rare above this line

• TAE-quiesence seen for $\beta_{fast}/\beta_{tot} < 0.3$.

Parameters for these HHFW-stabilized shots similar to other avalanching NSTX plasmas

- TAE-quiesence seen for $\beta_{fast}/\beta_{tot} < 0.3$.
- Green-bordered-inblack points are HHFW-stabilized.
- Blue-in-black, red-inblack are beam-only periods.
- Cyan-in-black are transition points, that is shortly after HHFW is applied.

NOVA and ORBIT were used to model fast-ion redistribution through an early TAE burst

- Absolute mode amplitude evolution provided by a single reflectometer channel – no check of mode structure.
- Only dominant n=1 and much weaker n=2 used in ORBIT simulation.

100

shot 117927

(D) NSTX-U

0.8

0.6

0.4

0.2

0.0

1.1

18th Int. ST Workshop, Princeton University – HHFW suppression of *AE, Fredrickson (Nov 3-6, 2015)

No obvious explanation in NOVA analysis, although detailed stability calculations still remain to be done

- Low rotation rate means NOVA fast-ion drive calculations should be reasonable.
 - for normal NSTX plasmas, the high rotation is not folded into the resonance calculations.
- Non-RF shot (blue) has 'closed' continuum near axis, but q(0) is relatively uncertain.

As found previously, reasonable agreement between measured mode amplitude and neutron rate drop

- In this case, neutron rate drop mostly from lost fast ions.
- Mode amplitude 70% of measured amplitude gives best agreement with neutron rate drop measurement.
- Agreement gives some confidence in NOVA/ORBIT modeling.
- Constraint on mode amplitude is pretty weak – meaning large uncertainty.

Large V_{fast}/V_{Alfvén} means most of distribution can resonantly interact with TAE

- ORBIT simulations
 predict most of drive for 1000
 TAE comes from lower
 energy beam ions.
- Higher energy beam ions can strongly interact, but *net* drive is small.

NPA data suggests some phase-space redistribution of beam ions with HHFW heating

- Some deficit in higher energies between beam-only (black) and beam+HHFW (red) at R_{tan}=60cm.
- Possibly an increment with HHFW in intermediate energy range for R_{tan}=90cm.
- Changes smaller for R_{tan}=100cm and R_{tan}=120cm.
- More work is needed to interpret these observations.
- Lowest NPA energy range higher than 45 keV.

Summary – effective TAE suppression technique discovered?

- ≈3 MW of HHFW heating is seen to suppress all fast-ion driven activity – fishbones, TAE, GAE.
- The suppression is not immediate, but takes some 10's of ms, suggesting that the HHFW is modifying the distribution of fast ions.
- Neutron rate and NPA data show no indication of excessive fast ion losses with HHFW, although NPA data suggests some redistribution is happening.
- There is some suggestion that the frequency chirping is initially suppressed, followed by stabilization of the modes.
- The target plasma was not typical, future work will explore extending this suppression technique to more typical conditions.

TAE are mostly low toroidal mode number, n=1 up to n=3

- Target plasma was Helium with plasma current of about 300 kA.
- One neutral beam source was injected at 90 keV.
- The low measured neutron rate is comparable to the beam-beam neutron rate modeled with TRANSP.
- Neutron rate drops, of order 25%, seen with each burst.

TAE are mostly low toroidal mode number, n=1 up to n=3

- Target plasma was Helium with plasma current of about 300 kA.
- One neutral beam source was injected at 90 keV.
- The low measured neutron rate is comparable to the beam-beam neutron rate modeled with TRANSP.
- Neutron rate drops, of order 25%, seen with each burst.
- Neutron rate increase with HHFW is, at least partly, due to pick-up.

TAE transition from strong chirping to weak, or no chirping

