Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii

University of Wisconsin - Madison

ISTW - November 3-6, 2015

Motivation: control of divertor head loads

- Control of divertor heat loads (both steady state and transient) remains one of the key challenges for a fusion based reactor and for a compact fusion nuclear science development facility (FSNF)
- Resonant magnetic perturbations (RMPs) are a promising method for ELM control → breaking of axisymmetry
- Advanced divertors (specialized divertor geometry): Snowflake, X-divertor) for steady state heat flux reduction
- Likely, both concepts will have to work together, and NSTX-U is a well suited device to study this: What is the impact on neutral fueling and exhaust (density control), and how does this affect high recycling and transition to detachment?

Introduction to magnetic perturbations

- Edge transport modeling
 - Introduction to EMC3-EIRENE
 - First simulation results

Perturbation of the magnetic separatrix \rightarrow lobes

(arrows indicate field direction)

 The separatrix associated with X has 2 branches (set of field line trajectories):

$$\begin{split} & \boldsymbol{W}^+ &= \left\{ \mathbf{p} | \lim_{l \to \infty} \, \boldsymbol{F}_{\mathbf{p}}(l) \to \mathbf{X} \right\} \\ & \boldsymbol{W}^- &= \left\{ \mathbf{p} | \lim_{l \to -\infty} \, \boldsymbol{F}_{\mathbf{p}}(l) \to \mathbf{X} \right\} \end{split}$$

 $F_{\mathbf{p}}(I)$: field line through \mathbf{p}

 Both branches overlap in the unperturbed configuration

Perturbation of the magnetic separatrix \rightarrow lobes

(arrows indicate field direction)

 The separatrix associated with X has 2 branches (set of field line trajectories):

$$\begin{split} & \boldsymbol{\mathcal{W}}^+ &= \left\{ \mathbf{p} | \lim_{l \to \infty} F_{\mathbf{p}}(l) \to \mathbf{X} \right\} \\ & \boldsymbol{\mathcal{W}}^- &= \left\{ \mathbf{p} | \lim_{l \to -\infty} F_{\mathbf{p}}(l) \to \mathbf{X} \right\} \end{aligned}$$

- $F_{\mathbf{p}}(I)$: field line through \mathbf{p}
- Both branches overlap in the unperturbed configuration
- Magnetic perturbations result in a splitting, and both branches may intersect each other transversely
- This opens up a connection between the plasma interior and the divertor targets

Lobe density increases with lower aspect ratio

Lobes become smaller and more frequent towards the X-point

obe density:
$$\frac{1}{L} \approx \frac{n B_{\text{tor}}}{2\pi R B_{\text{pol}}} \approx \frac{n B_0}{2\pi R_0 B_{\text{pol}}} \left(1 - \frac{\delta_X}{A}\right)^{-2}$$

- Higher density may facilitate heat flux spreading between lobes
- Radial extension of lobes depends on perturbation strength

Radial size of lobes defines poloidal extend of the magnetic footprint, lobe density not affected by I_c

H. Frerichs (hfrerichs@wisc.edu)

³D edge modeling for NTSX-U

Introduction to magnetic perturbations

The snowflake divertor configuration

3 Edge transport modeling

Introduction to EMC3-EIRENE

First simulation results

The snowflake divertor configuration

- Second order null of the poloidal magnetic field ⇒ the separatrix acquires a characteristic hexagonal form
- This results in a flux expansion near the null-point, and

$$B_{
m pol}^{
m (snowflake)} \, \sim \, r^2$$

while

 $B_{
m pol}^{
m (standard\ divertor)}\,\sim\,r$

r: distance from the null-point

- SF facilitates longer connection lengths and two additional strike points
- Generalization: two first order nulls in (close) proximity

The 'snowflake' configuration allows for a variety of magnetic topologies at NSTX-U

'Nearly exact snowflake': approximation to 'classical' snowflake

The 'snowflake' configuration allows for a variety of magnetic topologies at NSTX-U

- 'Nearly exact snowflake': approximation to 'classical' snowflake
- Here SF0 is actually 'snowflake minus', which is topologically equivalent to 'connected double null' (CDN)

The 'snowflake' configuration allows for a variety of magnetic topologies at NSTX-U

- 'Nearly exact snowflake': approximation to 'classical' snowflake
- Here SF0 is actually 'snowflake minus', which is topologically equivalent to 'connected double null' (CDN)
- The secondary X-points in the (tilted) SF- and SF+ configurations here are outside the divertor targets → topology is 'lower single null' (LSN)

SF0 has increased connection length, but flux compression on target (with respect to SD)

- Both SF0 and SF- feature longer connection lengths then SD at the outer strike point: may result in lower divertor temperatures
- SF0 features flux compression while SF- features flux expansion with respect to standard divertor (SD) configuration: can impact heat flux spreading

SF0 has increased connection length, but flux compression on target (with respect to SD)

- Both SF0 and SF- feature longer connection lengths then SD at the outer strike point: may result in lower divertor temperatures
- SF0 features flux compression while SF- features flux expansion with respect to standard divertor (SD) configuration: can impact heat flux spreading

Lobe size and extension depends on equilibrium

- Lobe density is much higher in SF0, i.e. lobe size is smaller ($I_p = 1 \text{ MA}$)
- Lobe size scales with r² near the X-point in SF0, because B_{pol} does
 → very small change in size between neighboring lobes

ntroduction to magnetic perturbations

- Edge transport modeling
 - Introduction to EMC3-EIRENE
 - First simulation results

A 3D steady state transport model for the edge plasma

 Field lines are reconstructed from a 3D block-structured grid which can be adapted to the topology at hand

H. Frerichs et al., Comp. Phys. Commun. 181 (2010) 61

- Classical transport (Braginskii) along field lines
- Self-consistent solution by iterative application
- The following simulations are based on: $= 3.12 \cdot 10^{20} \, \mathrm{s}^{-1}(50 \, \mathrm{A})$ Particle in-flux Γin Recycling coefficient 0.99 C_{rec} Edge input power Pin 2 MW = Anomalous cross-field transport: $0.3\,{
 m m}^2\,{
 m s}^{-1}$ (particles) D_{\perp} = $\chi_{i\perp} = 2.0 \,\mathrm{m^2 \, s^{-1}}$ (energy) $\chi_{e\perp}$ =
- Impurity transport and radiation is neglected at this point

No RMPs: SF0 operates at higher divertor density

RMPs: Lobes at the LFS, diffusion to strong at HFS

Heat load analysis favours SF- configuration

- Small reduction of peak heat load in SF+
- $\bullet\,$ Moderate reduction of peak heat load in SF-, peak is found at 10 20 ${\rm cm}\,$ distance from the separatrix
- Significant increase of peak heat load in SF0 due to compression of flux surfaces at the divertor target.

Heat load analysis favours SF- configuration

- Small reduction of peak heat load in SF+
- $\bullet\,$ Moderate reduction of peak heat load in SF-, peak is found at 10 20 ${\rm cm}\,$ distance from the separatrix
- Significant increase of peak heat load in SF0 due to compression of flux surfaces at the divertor target.
- No significant impact of RMPs on toroidally averaged heat loads

- Application of RMPs results in the formation of helical lobes which have a higher frequency at lower aspect ratio
- The 'snowflake' family of divertor configurations allows a variety of magnetic topologies ranging from flux compression to flux expansion at the divertor targets
- First transport simulations favour the SF- configuration for heat load reduction

Outlook:

- How do RMPs and advanced divertor configurations impact neutral fueling and exhaust, and how does this affect high recycling and transition to detachment?
- What is the impact of plasma response effects (use NIMROD, M3D-C1)

aspect ratio:	$A = R_0/w$
elongation:	$\kappa = h/w$
triangularity:	$\delta = \Delta / W$

Radial lobe size depends on perturbation strength in relation to equilibrium field

Field lines can connect through the lobes from inside the separatrix to the divertor targets

Moiré pattern caused by small, similar sized lobes

- Lobe frequency is much higher in SF0, i.e. lobe size is smaller ($I_p = 1 \text{ MA}$)
- Lobe size scales with r² near the X-point in SF0, because B_{pol} does
 → very small change in size between neighboring lobes

A 3D steady state fluid model for the edge plasma

Particle balance (n: plasma density)

 $\nabla \cdot \left[\mathbf{n} u_{\parallel} \mathbf{e}_{\parallel} - D_{\perp} \mathbf{e}_{\perp} \mathbf{e}_{\perp} \cdot \nabla \mathbf{n} \right] = S_{\rho}$

 D_{\perp} : anomalous cross-field diffusion, S_{ρ} : ionization of neutral particles

Momentum balance (u_{\parallel} : fluid velocity parallel to magnetic field lines)

$$\nabla \cdot \left[m_i n u_{\parallel}^2 \mathbf{e}_{\parallel} - \eta_{\parallel} \mathbf{e}_{\parallel} \mathbf{e}_{\parallel} \cdot \nabla u_{\parallel} - D_{\perp} \mathbf{e}_{\perp} \mathbf{e}_{\perp} \cdot \nabla \left(m_i n u_{\parallel} \right) \right] = -\mathbf{e}_{\parallel} \cdot \nabla n \left(T_e + T_i \right) + S_m$$

 $\eta_{\parallel} \propto T_i^{5/2}$: parallel viscosity, $\eta_{\perp} = m_i n D_{\perp}$: cross-field viscosity, S_m : interaction (CX) with neutral particles

Energy balance (T_e , T_i : electron and ion temperature)

$$\nabla \cdot \left[\frac{5}{2}T_{e}\left(nu_{\parallel}\mathbf{e}_{\parallel} - D_{\perp}\mathbf{e}_{\perp}\mathbf{e}_{\perp}\cdot\nabla n\right) - \left(\kappa_{e}\mathbf{e}_{\parallel}\mathbf{e}_{\parallel} + \chi_{e}n\mathbf{e}_{\perp}\mathbf{e}_{\perp}\right)\cdot\nabla T_{e}\right] = +k\left(T_{i} - T_{e}\right) + S_{ee}$$
$$\nabla \cdot \left[\frac{5}{2}T_{i}\left(nu_{\parallel}\mathbf{e}_{\parallel} - D_{\perp}\mathbf{e}_{\perp}\mathbf{e}_{\perp}\cdot\nabla n\right) - \left(\kappa_{i}\mathbf{e}_{\parallel}\mathbf{e}_{\parallel} + \chi_{i}n\mathbf{e}_{\perp}\mathbf{e}_{\perp}\right)\cdot\nabla T_{i}\right] = -k\left(T_{i} - T_{e}\right) + S_{ei}$$

 $\kappa_{e,i} \propto T_{e,i}^{5/2}$: classical parallel heat conductivity, χ_e, χ_i : anomalous cross-field transport, $k \propto n^2 T_e^{-3/2}$: energy exchange between el. and ions, S_{ee}, S_{ei} : interaction with neutral particles and impurities (radiation)

Field lines are reconstructed from a finite flux-tube grid

The 3D grid is generated by field lines tracing starting from 2D base grids

EMC3: bilinear interpolation within flux-tubes (4 pre-calculated field lines)

- Discretization in the 'cross-field' direction can be adapted to the magnetic configuration at hand.
- Unlike grids for 2D transport modeling, the actual information about the magnetic configuration is not stored in the 2D base grid(s) but in the 3D grid.