

Effect of Lithium Evaporation on the Edge Plasma in NSTX, and plans for NSTX-U

R. Maingi, J.M. Canik, A. Diallo, R.E. Bell, D.P. Boyle, M.A. Jaworski, R. Kaita, S.M. Kaye, B.P. LeBlanc, S.A. Sabbagh, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

18th International Spherical Torus Workshop Princeton, NJ 3-6 November 2015

Plasma characteristics and stability improved with increasing lithium evaporation in strongly shaped NSTX discharges

- Lithium evaporated before each discharge
 - Deposition amount scanned, as also in weakly shaped discharges

(no liquid lithium divertor results in this talk)

- Global characteristics changed
 - Recycling: D_a declined in all measured views
 - Energy confinement (τ_F , H-factor) improved
 - When discharges were ELM-free, radiated power increased with time (several techniques developed to deal with this problem)
- Edge n_e, T_e, pressure profiles changed
 - Reduction in edge n_e gradient changed edge P', improving MHD stability and eliminated ELMs in weakly shaped discharges

Outline

- Effect of lithium on individual discharges
- Trends vs. pre-discharge lithium dose
- Effect on edge profiles
- SOLPS edge transport analysis

New analysis from highly shaped plasma dataset as envisioned in NSTX-U, and for future STs

Center of LITER deposition very near (*far from*) outer strike point in high (*low*) triangularity discharges

R. Maingi et al., *J. Nucl. Mater.* **463** (2015) 1186

Performance of strongly shaped discharges improved more with increasing lithium (similar to weakly shaped discharges)

- I_p duration not quite optimized with higher Li
- Reduced P_{NBI}
- Reduced dN/dt
- Comparable stored energy
- H-factor increased by 50%
- Increasing P_{rad} wo/ELMs
 F. Scotti et al., Nucl. Fusion 53 (2013) 083001
- Reduced recycling, long ELM-free phases

Lower divertor D_{α} decreased rapidly with increasing Li deposition in highly shaped discharges

- 5x drop in $\mbox{\bf D}_{\alpha}$ drop because of transition from high recycling to low recycling
 - Partial detachment in highly shaped no-Li discharges?
- Possible geometric effect: Li deposition closer to outer strike point and/or high flux expansion facilitates transition from high to low recycling at lower Li deposition in highly shaped discharges

D_{α} and neutral pressure decreased, and H97L increased with increasing pre-discharge lithium evaporation in all data

Edge profiles change markedly with increasing lithium in strongly shaped discharges (as in weakly shaped ones)

Higher NBI power in strongly shaped discharges leads to high edge temperature and pressure

Goal of SOLPS interpretive analysis is to assess recycling coefficient and radial transport changes with lithium

- Generate grid based on discharge equilibrium
- Prescribe power and particle fluxes through inner boundary from data
- Vary free parameters to match measured midplane and divertor profiles
 - Separatrix location adjusted to match peak q_{div}^{peak}
 - \checkmark Plate recycling coefficient and radiation varied to match peak D_{α}
 - ✓ Extra power-balance iteration allows complex $D(\psi)$, $\chi(\psi)$
 - No separation between D and v_{pinch} , so diffusivities are 'effective' values, i.e. to get flux right
- Result: recycling coefficient drops f/0.99 to ~0.9
- Result: transport increases in last 3% of ψ_N , but decreases inside of that region

Reference no-lithium discharge has low heat flux & high D_{α} : modeling indicates partially detached state

Shallow edge n_e gradient, deeper temperature gradients, and higher heat flux/lower D_{α} reproduced in modeling

* Uncertainty in peak heat flux due to lithium use, no dual-band adapter

Particle transport reduced with increasing lithium Energy transport reduced a few cm insides of separatrix

Increasing lithium in direction of yellow arrow

Trend of improving discharge performance with increasing lithium observed in highly shaped plasmas

- Recycling and neutral pressure decreased with increasing Li
- Energy confinement increased and edge stability improved with increasing Li
 - Divertor peak heat flux also increased substantially
- Recycling coefficient dropped to ~ 0.9 from 0.99 (SOLPS)
 - Li deposition close to strike point facilitates high -> low recycling?
- Transport increased in last 3% of ψ_N , but decreased inside of that region (SOLPS)
- Change in edge profiles likely the key to ELM elimination, as in weakly shaped discharges
 - ELITE edge stability calculations commencing
 - Micro-stability assessment in progress

Lithium delivery tools being developed for NSTX-U

- Downward facing evaporators ~ Jan. 2016 (first lithium in NSTX-U: controlled scan as reported here)
- Upward facing evaporators ~ Fall 2016
- Impurity granule injector (ELM pacing, including, carbon, lithium, etc – see Lunsford poster) ~ Dec. 2015
- Lithium dropper ~ needs re-installation of guide tube (Fall 2016+)
- Pre-loaded lithium targets in divertor tiles ~ Fall 2017
- Looking forward to conducting these types of experiments in NSTX-U!

Backup

Comparison of lithium results from NSTX, DIII-D, and EAST

	NSTX	DIII-D*	EAST**
Delivery method	Inter-shot evaporation, (Dropper)	Dropper	Dropper, (Morning evap., FLiLi Limiter)
Pedestal Width	Increased	Increased	?
Pedestal Height	Increased	Increased	?
H-factor	Increased	Increased	Unchanged
Edge fluctuations	Decreased	Increased	Increased
Radiated power	Ramp during ELM-free phase	Steady in ELM- free phase	Steady in ELM- free phase
Effect on ELMs	Eliminated	Delayed	Eliminated
Recycling	Reduced	Unchanged	Reduced

^{*} DIII-D: T.H. Osborne, *Nucl. Fusion* **55** (2015) 063018

^{**} EAST: J.S. Hu, *Phys. Rev. Lett.* **114** (2015) 055001

ELMs disappeared gradually with increasing lithium (also observed in weakly shaped discharges)

ELM-free H-mode induced by lithium wall conditioning in weakly shaped discharges

- Pre-Li, with-Li (260 mg), with-Li (700 mg)
- Lower NBI to avoid β limit
- Lower n_e
- Similar stored energy
- H-factor increased by 40%
- Higher P_{rad} /P_{heat}
- Reduced recycling, ELM-free with higher Li

Lithium improved performance of strongly shaped discharges, similar to weakly shaped ones

- **Duration extended**
- Same P_{NBI}
- Reduced dN/dt
- Higher stored energy
- Higher confinement
- Increasing P_{rad}
- Reduced recycling, long **ELM-free phases**

Lithium reduced recycling and improved confinement of both strongly and weakly shaped discharges

Similar effects on discharges observed with weak and strong shaping

- Duration extended
- Same and lower P_{NBI}
- Reduced dN/dt
- Higher stored energy
- Higher confinement
- Increasing P_{rad}
- Reduced recycling, long ELM-free phases

ELMs eliminated gradually during original low δ experiment

Power and particle exhaust a key challenge for future devices

 Liquid metals are being studied at PPPL as an alternative to solid PFCs for future devices

- NSTX used lithium wall coatings (evaporative and liquid) to test the efficacy of lithium in particle and power exhaust
 - Lithium enables reduced recycling from PFCs
 - Lithium will be important research line in NSTX-Upgrade, which is scheduled to commence operation in 2015

Flow chart of how lithium results in ELM elimination similar for highly and weakly shaped discharges

ψ_N from 0.95-1 (recycling region)

ψ_{N} from 0.8-0.94

