Configuration Studies for Next-Step Spherical Tokamaks*

COLUMBIA Lawrence Livermore National Laboratory

NSTX-U

Office of

Science

CCFE TEXAS

WISCONSIN

J. Menard¹, M. Boyer¹, T. Brown¹, J. Canik², B. Colling³, B. Covele⁴, C. D'Angelo⁵, A. Davis⁵, L. El-Guebaly⁵, S. Gerhardt¹, M. Gryaznevich⁶, M. Harb⁵, S. Kaye¹, C. Kessel¹, D. Kingham⁶, M. Kotschenreuther⁴, S. Mahajan⁴, R. Maingi¹, E. Marriott⁵, L. Mynsberge⁵, C. Neumeyer¹, M. Ono¹, R. Raman⁷, S. Sabbagh⁸, V. Soukhanovskii⁹, P. Titus¹, P. Valanju⁵, R. Woolley¹, Y. Zhai¹, and A. Zolfaghari¹

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA
²Oak Ridge National Laboratory, Oak Ridge, TN, USA
³Culham Centre for Fusion Energy, Abingdon, Oxfordshire, UK
⁴University of Texas, Austin, TX, USA
⁵University of Wisconsin, Madison, WI, USA
⁶Tokamak Energy Ltd, Milton Park, Oxfordshire, UK
⁷University of Washington, Seattle, WA, USA
⁸Columbia University, New York, NY, USA
⁹Lawrence Livermore National Laboratory, Livermore, CA, USA

18th International Spherical Torus Workshop Princeton University Princeton, NJ USA 3-6 November 2015

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

Possible missions for next-step STs

1. Integrate high-performance, steady-state, exhaust

- Divertor test-tokamak DTT Past (& future) PPPL Studies
- 2. Fusion-relevant neutron wall loading
 - \succ $\Gamma_n \sim 1-2MW/m^2$, fluence: $\geq 6MW-yr/m^2$
- 3. Tritium self-sufficiency
 - ➤ Tritium breeding ratio TBR ≥ 1
- 4. Electrical self-sufficiency

Recent / Present PPPL-led Studies

5. Large net electricity generation

> Q_{eng} = P_{electric} / P_{consumed} ~ 1

> Q_{eng} >> 1, P_{electric} = 0.5-1 GWe

Up/down-symmetric long-leg divertor \rightarrow q_{\perp -divertor} < 1-2 MW/m² under detached conditions (SOLPS / ORNL)

Negative NBI (0.5 MeV) with large R_{TAN} favorable for heating and current drive (CD) for R=1.7m ST-FNSF

Free-boundary TRANSP/NUBEAM used to compute profiles for 100% non-inductive plasmas with Q_{DT}~2

R=1.7m configuration with Super-X divertor

TBR contributions by blanket region

R=1.7m configuration

Summary of TBR vs. device size for A=1.7 Cu-TF ST-FNSF

R=1.7m: **TBR ≈ 1**

R=1.0m: **TBR < 1 (≈ 0.9)**

- 1m device cannot achieve TBR > 1 even with design changes
- Solution: purchase ~0.4-0.55kg of T/FPY from outside sources at \$30-100k/g of T, costing \$12-55M/FPY

What is optimal A for HTS ST FNSF / Pilot?

Approach:

- Fix plasma major radius and heating power
 - Choose compact device $\leq R_0 = 3m$ to have any hope of achieving Pilot mission with AT/ST at ~few \$B level
- Apply magnet and core plasma constraints (see subsequent slides)
- Vary aspect ratio from A = 1.6 to 4
- Vary HFS WC shield thickness: 30-70cm
- Calculate achievable Q_{DT} , Q_{eng} , required H_{98}
- Assess various trade-offs

Aspect ratio dependence of limits: $\kappa(\epsilon)$, $\beta_N(\epsilon)$

- NSTX data at low-A (+ NSTX-U/ST-FNSF modelling)
- DIII-D, EAST for higher-A

 $- \kappa \rightarrow 1.4 \text{ for } A \rightarrow \infty$

- Profile-optimized no-wall stability limit at f_{BS} ≈ 50%
 - Menard PoP 2004

$$\beta_N \rightarrow 3.1$$
 for A $\rightarrow \infty$

$$\beta_T \sim A^{-1/2} (1 + \kappa^2) \beta_N^2 / f_{BS}$$
$$P_f \propto \epsilon (\kappa \beta_N B_T)^4$$

Q_{eng} maximized between A = 1.7-2.3 at fixed R₀, Optimal A depends on inboard WC shield thickness

Key assumption: can minimize or eliminate inboard T breeding, central solenoid

Selection of device HTS-ST performance goals

- Attempt to satisfy FNSF (fluence) and Pilot (net electric) goals
 - 6MWy/m² neutron wall loading (peak) at outboard midplane
 - Q_{eng} ~ 1 similar to previous PPPL Pilot Plant Study
- Assume n-radiation damage limit of $3-5 \times 10^{22}/m^2$
 - − HTS already tested to this damage fluence range (see next slide) → WC shield thickness ~ 60cm, $\Delta/R = 0.2 \rightarrow R_0 = 3m$
- With small / no inboard breeding, optimal A ~ 2.1-2.4
- But, for TBR ~ 1 probably need A $\leq 2 \rightarrow$ chose / try A=2
- Chosen design point (so far):
 - R=3m, B_T = 4T, A=2, κ =2.5, β_{N} = 4.2 (~no-wall limit)
 - H_{98y2} ~ 1.7, H_{Petty} ~ 1.2-1.3, H_{ST} ~ 0.7, P_{fusion} ~ 500-600MW
 - 80% Greenwald fraction, 50MW of 0.5-0.7 MeV NNBI
 - I_P = 12MA, double-swing of small OH provides ~ 2-3MA

PF coil layout, long-leg divertor, vertical maintenance similar between Cu and HTS FNSFs

A=2 HTS TF FNSF/Pilot

VECTOR-like A, but with small CS κ = 2.55, I_i = 0.82 All PF coils outside TF coil Outboard PF coils enclosed by TF coil

A=1.7 Copper TF FNSF

Configuration Studies for Next-Step STs (J. Menard)

Vertical port maintenance used for OB blanket and divertor modules via separate cryostat for upper PFs

- Potential advantages of this low-A configuration:
 - Reduced part count + no / small inboard breeding → simplified maintenance (?)
- Need to include some breeding at top + bottom
 - Similar to Cu ST-FNSF
- 2016 will study LM/Li wall and divertor compatibility with this HTS configuration

A=2 HTS ST Shielding Assessment

- Focus on inboard (IB) shield main functions are:
 - Protect IB magnet for machine lifetime (3.1 FPY)
 - Enhance OB breeding by reflecting neutrons to OB
 - Generate low decay heat to control temperature response during accident \rightarrow avoid using WC filler near FW.
- Two-layer IB shield presents best option:

• 3-D analysis confirms radiation damage at IB magnet is near/below limits:

- Peak fast n fluence to HTS ($E_n > 0.1 \text{ MeV}$) 4.3 x 10¹⁸ n / cm²
- Peak nuclear heating @ WP
- Peak dose to electrical insulator
- Total nuclear heating in IB magnet

4.3 x 10¹⁶ n / cm² 1.7 mW / cm³ 4 x10⁹ rads 8.7 kW

Detailed analysis of impact of blanket internals on TBR is being evaluated step-by-step

Steps:

- 1. 1-D infinite Cylinder: 100% LiPb breeder with 90% enriched Li
- 2. Li₁₇Pb₈₃ confined to OB blanket region and blanket behind divertor
- 3. 2 cm assembly gap between blanket modules
- 4. FS structure and FCI added to homogeneous mixture of blanket at top/bottom ends and behind divertor only
- 5. Materials assigned to 4 cm thick OB FW
- 6. Materials assigned to side, bottom/top, and back walls of blanket

To be added:

- 7. IB and OB cooling channels
- 8. SiC FCI
- 9. W Stabilizing shell
- 10. Penetrations.

Reduce aspect ratio (reduces Q_{eng}, no CS)

Summary

 Developed self-consistent A=1.7 Cu TF ST configurations w/ high TBR for fluence mission

 $-R_0 = 1 \text{ m} \rightarrow \text{TBR} \sim 0.9$

 $-R_0 = 1.7m \rightarrow TBR \sim 1.0$

- Optimal A for fusion performance with HTS TF and small/no inboard breeding or CS is A ≈ 2
 - High confinement may be required to exploit higher toroidal field potentially achievable with HTS
- A \approx 2 R₀ = 3m HTS FNSF / Pilot with fluence 6MWy/m² (peak) and Q_{eng} ~ 1 may be feasible

Backup – A=1.7 Cu TF FNSF

Peak radiation damage at PF coils are within allowable limits for different coil types (IB: Cu + MgO, OB: LTS)

- MgO limits: 10¹¹ Gy
- LTS limits (Nb₃Sn):
 - Fast neutron fluence: $10^{23} \text{ n/m}^2 (\text{E}_n > 0.1 \text{MeV})$
 - PF3: 1.15×10²³ n/m²
 - Peak Dose to Insulator: 2×10¹⁰ rads
 - PF3: 1.08×10¹⁰ rads
 - Peak Nuclear Heating:
 2 kW/m³
 - PF3: 2.2 kW/m³

Up/down-symmetric long-leg divertor \rightarrow q_{\perp -divertor} < 10MW/m² even under attached conditions (if integral heat-flux width λ_{a-int} > 2mm)

Configuration Studies for Next-Step STs (J. Menard)

FNSF center-stack can build upon NSTX-U design and incorporate NSTX stability results

Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)

- Coolant paths: gun-drilled holes or grooves in side of wedges + welded tube

•Bitter-plate divertor PF magnets in ends of TF achieve high triangularity

- **NSTX data:** High δ > 0.55 and shaping S = q₉₅I_P/aB_T > 25 minimizes disruptivity
- -Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose

Bitter coil insert for divertor coils in ends of TF

MgO insulation appears to have good radiation resistance for divertor PF coils

R&D of a Septum Magnet Using MIC coil

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

Kuanjun Fan^{1,A)}, Hiroshi Matsumoto^{A)}, Koji Ishii^{A)}, Noriyuki Matsumoto^{B)} ^{A)} High Energy Accelerator Research Organization (KEK) 1-1 OHO, Tsukuba, Ibaraki, 305-0801, Japan ^{B)} 2NEC/Token

R=1.7m ST-FNS facility layout using an extended ITER building

ST-FNSF shielding and TBR analyzed with sophisticated 3-D neutronics codes

- CAD coupled with MCNP using UW DAGMC code
- Fully accurate representation of entire torus
- No approximation/simplification involved at any step:
 - Internals of two OB DCLL blanket segments modeled in great detail, including:
 - FW, side, top/bottom, and back walls, cooling channels, SiC FCI
 - 2 cm wide assembly gaps between toroidal sectors
 - 2 cm thick W vertical stabilizing shell between OB blanket segments
 - Ports and FS walls for test blanket / materials test modules (TBM/MTM) and NNBI

Heterogeneous OB Blanket Model, including FW, side/back/top/bottom walls, cooling channels, and SiC FCI

Two sizes (R=1.7m, 1m) assessed for shielding, TBR

Parameter:		
Major Radius	1.68m	1.0 m
Minor Radius	0.95m	0.6m
Fusion Power	162MW	62MW
Wall loading (a	vg) 1MW/m ²	1MW/m ²
TF coils	12	10
TBM ports	4	4
MTM ports	1	1
NBI ports	4	3
Plant Lifetime	~20 years	6
Availability	10-50%	6 Full Power
	30% avg	Years (FPY)

Mapping of dpa and FW/blanket lifetime (R=1.7 m Device)

Peak radiation damage at PF coils are within allowable limits for different coil types (Cu with MgO, LTS/HTS)

3-D Neutronics Model of Entire Torus

0.5MeV NNBI well confined down to ~2MA

Options to increase TBR > 1

- Add to PF coil shield a thin breeding blanket (Δ TBR ~ +3%)
- Smaller opening to divertor to reduce neutron leakage
- Uniform OB blanket (1m thick everywhere; no thinning)
- Reduce cooling channels and FCIs within blanket (need thermal analysis to confirm)
- Thicker IB VV with breeding

Potential for TBR > 1 at R=1.7m

$R_0 = 1m \text{ ST-FNSF}$ achieves TBR = 0.88

- 1m device cannot achieve TBR > 1 even with design changes
- Solution: purchase ~0.4-0.55kg of T/FPY from outside sources at \$30-100k/g of T, costing \$12-55M/FPY

Impact of TBM, MTM, NBI ports on TBR

Backup – A=2 HTS FNSF / Pilot

Plasma constraints

- Fix plasma major radius at $R_0 = 2.5-3m$
 - Chosen to be large enough to allow space for HTS neutron shield and access Q_{eng} > 1
- Inboard plasma/FW gap = 4cm
- Use ε dependent κ(ε), β_N (ε) (see next slide)
- Greenwald fraction = 0.8
- q* not constrained
 - q* is better ϵ -invariant than q_{95} for current limit
 - Want to operate with $q^* > 3$ to reduce disruptivity
- 0.5MeV NNBI for heating/CD fixed $P_{NBI} = 50$ MW
- H_{98y2} adjusted to achieve full non-inductive CD

Engineering constraints

- Magnet constraints (T. Brown ST-HTS Pilot, K-DEMO)
 - Maximum stress at TF magnet = 0.67-0.9GPa
 - Maximum effective TF current density = $65MA/m^2$
 - OH at small R \rightarrow higher OH solenoid flux swing for higher A
- Shielding / blankets
 - Assume HTS fluence limit of 3-5x10²²
 - No/thin inboard blanket, ~1+ m thick outboard blanket
 - 10x n-shielding factor per 15-16cm WC for HTS TF
 - Also 8cm inboard thermal shield + other standard radial builds
- Electrical system efficiency assumptions:
 - 30% wall plug efficiency for H&CD typical of NNBI
 - 45% thermal conversion efficiency typical of DCLL
 - Also include pumping, controls, other sub-systems
 - See Pilot Plant NF 2011 paper for more details

HTS performance vs. field and fast neutron fluence

R Prokopec et al

Figure 6. Critical currents (ASC-40) in magnetic fields applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) before and after irradiation to a fast neutron fluence of $2.3 \cdot 10^{22} \text{ m}^{-2}$.

Figure 8. Normalized critical currents in a magnetic field of 15 T applied parallel to the ab-plane (left) and parallel to the *c*-axis (right) as a function of neutron fluence.

Configuration Studies for Next-Step STs (J. Menard)

Very preliminary work suggests annealing may be able to reverse some effects of radiation damage in HTS conductors

Fig. 3 The change of positron mean lifetime (MLT) after irradiation and annealing (a); Critical temperatures measured in SQUID magnetometer (b).

Radial build (includes small OH) - T. Brown

	3.00	m R0 CCFE HTS	ST ra	idial bi	iild									
		10 TF coils	2.00	AR					4.00	B0				
		COMP BUILD, Z=0				TOTAL	TOTAL		16.5	Bmax				
		(in)	(mm)	(in)	(mm	(mm)	(in)		854	Ave Tresca stress (Mpa)				
		Machine Center				0		180						
Added snace		TF center bore	68	2.677		68.0								
		OH coil	225.0	8.858	225	293.0	11.535							
between OH		OH - TF gap	10	0.394		303.0								
	TF inbd leg	Ext structure	190.0	7,480		493.0		0	needed	to add to r	nose sti			
		Clearance	2.00	0.079		_	230.000			CALCULATIONS for OH at inner bore			r bore	
		ground wrap	4.00	0.157		499.0	19.646			B =	⊧µ _∎ J _∎	(Ro - F	Ri) where <mark>p</mark>	₀ =4π × 10-1
		Winding pack thk	240	9,449		729.0	28.701		A	∖ssume J₀ (N	//A/m^2)	70		
		ground wrap	4.00	0.157		733.0	28.858				B(T) =	19.8		
		Clearance	2.00	0.079										
		Ext structure	35.0	1.378	477	780.0	30.709			OH stress	= B _i R _i J	12		
		TF-OH TPT	2.0	0.079						stress =	47.11	Mpa		
		VV TPT	5.0	0.197										
		wedge coil asmbly fit up	1.0	0.039						OH flux = B x mean area of xolenoid				
	Thermal Insu	Thermal Shield	8.0	0.315						flux =	2.03	volt sec	conds (web	er)
		Min TF/VV Gap	5.0	0.197	21	801	31.535							
60 om 1//C	inbd VV	VV shell thk	12	0.472										
		borated water/W shield	100	3.937										
uses VV		VV shell thk	12	0.472	124	925	36.417							
		WC inboard shield	500	19.685		1425	56.102							
shield and			5.0	0.197		1400	57,400							
shield in	FW	FW	30	1.181		1460	57.480							
		Plasma SU	40	1.575	_	1500	59.055							
front of it.	DI 50	Hiasma minor radii	1500	09.055		2000								
	Plasma HU					3000								

For AR 2 device:

OH located inside of TF bore:

854 Mpa Tresca stress with 4.0 B0 and 176.5 TF Bmax

OH flux: 2 Vs with 70 Jc solenoid and 19.8 T

Configuration Studies for Next-Step STs (J. Menard)

TF and OH magnet parameters vs. aspect ratio using models from Brown and Zhai

Assessing long-leg / deep-V divertor

- PF coils outside TF
- Increase strike-point radius ~2× to reduce q_{||} and peak heat flux
- Divertor PFCs in region of reduced neutron flux
- Narrow divertor aperture for increased TBR
- More space for breeding at top/bottom of device

Long-leg divertor aids heat flux reduction

Can also exhaust onto back of OB blanket (like vertical target in conventional divertor)

Latest HTS-ST: R=3m, A=2, P_{fusion} ~ 500MW, Q_{eng} ~1-1.5

R=3 m Configuration and Key Parameters

Neutron Wall Loading Distribution

Nuclear Analysis Performed with Sophisticated 3-D Neutronics Codes

- CAD coupled with MCNP using UW DAGMC code.
- Fully accurate presentation of <u>entire torus</u>.
- Neutron source model on R-Z grid, presenting fusion power density.
- No approximation or simplification involved in 3-D model.
- Evaluated:
 - Neutron wall loading distribution
 - Radiation damage at IB magnet
 - Tritium breeding ratio (ongoing).

Radiation Limits

Overall TBR (for T self-sufficiency)	~ 1	
Damage to RAFM steel structure	20 < 50 > 65	dpa – GEN-I dpa – GEN-II dpa – ODS (NS)
Helium Production (for reweldability of FS)	1 ?	He appm
HTS Magnet (@ 20-40 K): Peak fast n fluence to HT superconductor (E _n > 0.1 MeV) Peak nuclear heating @ WP Peak nuclear heating @ coil case	5 x 10 ¹⁸ 5 ?	n/cm² mW/cm³ mW/cm³
Peak dose to electrical insulator Total nuclear heating in 10 TF coils	5-10 x10 ¹⁰ ?	rads kW

A=2 HTS ST Shielding Assessment

- Focus on inboard (IB) shield main functions are:
 - Protect IB magnet for machine lifetime (3.1 FPY)
 - Enhance OB breeding by reflecting neutrons to OB
 - Generate low decay heat to control temperature response during accident \rightarrow avoid using WC filler near FW.
- Assessed impact of candidate IB materials
 - Ferritic steel, tungsten carbide, hydrides, water, borated water, and heavy water) on magnet shielding as well as reflecting neutrons to OB blanket to enhance TBR.
- Two-layer IB shield presents best (non-breeding) option:

HTS-ST Shielding Assessment (Cont.)

- Fast neutron fluence to HTS drives IB shield design.
- Combination of WC and H₂O represents superior shielding option as it helps reduce both fluence and magnet heating.
- Avoid:
 - Using B-H₂O and hydrides (having less shielding performance compared to WC/H₂O)
 - Straight radial assembly gaps.

 3-D analysis confirmed radiation damage at IB magnet are below limits:

Peak fast n fluence to HTS (E_n > 0.1 MeV) Peak nuclear heating @ WP Peak dose to electrical insulator Total nuclear heating in IB magnet 4.3 x 1018n/cm21.7mW/cm34 x109rads8.7kW

Blanket Design and Breeding Potential

- Dual-cooled LiPb blanket (DCLL) preferred US blanket concept for DEMO and power plants.
- 1 m thick OB blanket divided into two segments (to accommodate vertical stabilizing shells)
- He-cooled structural ring (SR) supports 20 OB blanket sectors.
- Several ports penetrate VV, SR, and blanket.
- During operation, 4 tritium breeding modules (TBM) and one Materials Testing Module (MTM) develop more advanced blanket/materials technologies for GEN-II, III, and IV DCLL blanket systems.
- To accurately estimate the overall TBR, 3-D model included details of internals and externals:
 - 2 cm wide assembly gaps between toroidal sectors
 - Internals of two OB DCLL blanket segments modeled in great details, including: FW, side, top/bottom, and back walls, cooling channels, SiC Flow Channel Inserts (
 - 2 cm thick W vertical stabilizing shell between OB blanket segments.
 - Ports (4 TBMs, 1 MTM, NNBIs). Configuration Studies for Next-Step STs (J. Menard)

3-D Blanket Model

Mapping of Tritium Production

Shield design and HTS radiation limits are critical issues for device size, lifetime

- B-FS/D₂O Shield-I helps enhance OB breeding and control IB decay heat
- VV composition optimizes at 60% WC and 35% H_2O
- Magnet heating limit is well met
- Need 1-2 cm additional shield to meet fluence limit.