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Configuration Studies for Next-Step STs (J. Menard) 

Possible missions for next-step STs 

1. Integrate high-performance, steady-state, exhaust  
 Divertor test-tokamak - DTT 

2.Fusion-relevant neutron wall loading 
 Γn ~ 1-2MW/m2,  fluence: ≥ 6MW-yr/m2 

3.Tritium self-sufficiency 
 Tritium breeding ratio TBR ≥ 1 

4.Electrical self-sufficiency  
 Qeng = Pelectric / Pconsumed ~ 1 

5.Large net electricity generation 
 Qeng >> 1, Pelectric = 0.5-1 GWe 
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Configuration Studies for Next-Step STs (J. Menard) 

Identified TF + PF coil set that supports  
long-leg / Super-X divertor for range of equilibria 

• 2nd X-point/snowflake increases SOL line-length 

• Breeding in CS ends important for maximizing TBR 

• PF coil set supports wide range of li:  0.4 – 0.8 
Elongation and squareness change with li variation 
Fixed strike-point R, controllable B-field angle of incidence (0.5-5˚) 
 

• Divertor coils in TF coil ends for equilibrium, high δ 

• Increased strike-point radius reduces B, q|| 
Strike-point PFCs also shielded by blankets 

TF coil 

• All equilibrium PF coils outside vacuum vessel 

PF coil Blanket Vessel Components: 
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Configuration Studies for Next-Step STs (J. Menard) 

Up/down-symmetric long-leg divertor  q⊥-divertor  
< 1-2 MW/m2  under detached conditions (SOLPS / ORNL) 
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Configuration Studies for Next-Step STs (J. Menard) 

Negative NBI (0.5 MeV) with large RTAN favorable for 
heating and current drive (CD) for R=1.7m ST-FNSF 

NBCD increases for Einj ≤ 0.5 MeV 
but saturates for Einj = 0.75 – 1MeV 

• Fixed target parameters in DD: 
– IP = 7.5MA, βN = 4.5, li = 0.5 
– ne / nGreenwald = 0.75, H98y,2 = 1.5 
– A=1.75, R=1.7m, BT = 3T, κ = 2.8 
– 〈Te〉=5.8keV, 〈Ti〉=7.4keV 

 
 

Optimal tangency radii:  
1.7m ≤ Rtan ≤ 2.4m 

Control 
q(0), qmin 

Shine-thru 
limit 

Maximum efficiency: Rtan=2.3-2.4m 

0.50 
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Configuration Studies for Next-Step STs (J. Menard) 

Free-boundary TRANSP/NUBEAM used to compute 
profiles for 100% non-inductive plasmas with QDT ~2 

• Neoclassical χion 

• ne / nGreenwald = 0.7 
• H98,y2 = 1.4 
• IP = 8.9MA, BT = 2.9T 
• fNICD = 100%, fBS = 65% 
• PNNBI = 80MW (0.5MeV) 
• Pfus = 200MW (50-50 DT) 

– 2.6% alpha bad orbit loss 
• QDT = 2.5 
•  βN = 5.5, Wtot = 58MJ 

– Wfast / Wtot = 14% 

• Maintain qmin > 2 
• q(0) / qmin controllable via Rtan and density 
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Configuration Studies for Next-Step STs (J. Menard) 

R=1.7m configuration with Super-X divertor 

Cu/SC PF coils 
housed in VV 

lower shell 
structure 

SC PF coils 
pairs located 
in common 

cryostat 

TF leads 

Vertical maintenance Design features 

Cu/SC PF coils 
housed in VV 

upper lid 

VV outer shell w/ 
shield material 

Angled DCLL 
concentric lines to 

external header 
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Ports for TBM, 
MTM, NBI 

Blankets 

TF coils 



Configuration Studies for Next-Step STs (J. Menard) 

TBR contributions by blanket region 

Inner Blanket Segment = 0.81 

Outer Blanket Segment = 0.15 

Total TBR ~ 1.03 with no 
penetrations or ports 

(heterogenous outboard blanket) 

0.0004 

0.0004 

0.034 

0.034 

Breeding at CS ends important:  
∆TBR = +0.07 

8 R=1.7m configuration 



Configuration Studies for Next-Step STs (J. Menard) 

Summary of TBR vs. device size  
for A=1.7 Cu-TF ST-FNSF 
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R=1.7m:  TBR ≈ 1 R=1.0m:  TBR < 1 (≈ 0.9) 
TBM 

NBI 

MTM 

TBM 

MTM 

NBI 

• 1m device cannot achieve TBR > 1 
even with design changes 

• Solution: purchase ~0.4-0.55kg of 
T/FPY from outside sources at $30-
100k/g of T, costing $12-55M/FPY 

 



Configuration Studies for Next-Step STs (J. Menard) 

What is optimal A for HTS ST FNSF / Pilot? 

Approach: 
• Fix plasma major radius and heating power 

– Choose compact device ≤ R0 = 3m to have any hope of 
achieving Pilot mission with AT/ST at ~few $B level  

• Apply magnet and core plasma constraints (see 
subsequent slides) 

• Vary aspect ratio from A = 1.6 to 4 
• Vary HFS WC shield thickness: 30-70cm  
• Calculate achievable QDT , Qeng , required H98 

• Assess various  trade-offs 
10 



Configuration Studies for Next-Step STs (J. Menard) 

Aspect ratio dependence of limits: κ(ε), βN(ε) 

• NSTX data at low-A (+ 
NSTX-U/ST-FNSF modelling) 

• DIII-D, EAST for higher-A 
–  κ  1.4 for A  ∞ 

ε = A-1 

• Profile-optimized no-wall 
stability limit at fBS ≈ 50% 
– Menard PoP 2004 

•  βN  3.1 for A  ∞ 
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Configuration Studies for Next-Step STs (J. Menard) 

Qeng maximized between A = 1.7-2.3 at fixed R0,   
Optimal A depends on inboard WC shield thickness 

0.1

1.0

10.0

100.0

0.30 0.40 0.50 0.60 0.70
TF WC n-shield thickness [m] 

Avg Neutron Fluence [ MWy/m2 ] 

Assumes damage fluence  
limit of 1023 n / m2 

Want ∆shield / R0 < ~20% for Qeng > 1 

Key assumption:  can minimize or eliminate 
inboard T breeding, central solenoid 

0.12 
0.16 
0.20 
0.24 
0.28 

∆shield / R0 

Qengineering = Pelectric / Pconsumed 

R0 = 2.5m 

12 



Configuration Studies for Next-Step STs (J. Menard) 

Selection of device HTS-ST performance goals 

• Attempt to satisfy FNSF (fluence) and Pilot (net electric) goals 
– 6MWy/m2 neutron wall loading (peak) at outboard midplane  
– Qeng ~ 1 – similar to previous PPPL Pilot Plant Study 

• Assume n-radiation damage limit of 3-5 × 1022/m2 

– HTS already tested to this damage fluence range (see next slide) 
 WC shield thickness ~ 60cm, ∆/R = 0.2  R0 = 3m 

• With small / no inboard breeding, optimal A ~ 2.1-2.4 
• But, for TBR ~ 1 probably need A ≤ 2  chose / try A=2 
• Chosen design point (so far): 

– R=3m, BT = 4T, A=2, κ=2.5, βN = 4.2 (~no-wall limit) 
– H98y2 ~ 1.7, HPetty ~ 1.2-1.3, HST ~ 0.7, Pfusion ~ 500-600MW 
– 80% Greenwald fraction, 50MW of 0.5-0.7 MeV NNBI 
– IP = 12MA, double-swing of small OH provides ~ 2-3MA 
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Configuration Studies for Next-Step STs (J. Menard) 

PF coil layout, long-leg divertor, vertical 
maintenance similar between Cu and HTS FNSFs 
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A=1.7 Copper TF FNSF 

Outboard PF coils enclosed by TF coil All PF coils outside TF coil 

A=2 HTS TF FNSF/Pilot 
VECTOR-like A, but with small CS 



Configuration Studies for Next-Step STs (J. Menard) 

Vertical port maintenance used for OB blanket and 
divertor modules via separate cryostat for upper PFs 

• Potential advantages of this 
low-A configuration: 

• Reduced part count + no / 
small inboard breeding  
simplified maintenance (?) 
 

• Need to include some 
breeding at top + bottom 

• Similar to Cu ST-FNSF 

Breeding 
regions 

• 2016 - will study LM/Li wall 
and divertor compatibility 
with this HTS configuration 
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Configuration Studies for Next-Step STs (J. Menard) 

A=2 HTS ST Shielding Assessment 
• Focus on inboard (IB) shield - main functions are: 

– Protect IB magnet for machine lifetime (3.1 FPY) 
– Enhance OB breeding by reflecting neutrons to OB 
– Generate low decay heat to control temperature response during 

accident  avoid using WC filler near FW. 
• Two-layer IB shield presents best option: 

 
 
 
 
 

• 3-D analysis confirms radiation damage at IB magnet is near/below limits: 
–  Peak fast n fluence to HTS (En > 0.1 MeV)  4.3 x 1018 n / cm2 

–  Peak nuclear heating @ WP         1.7  mW / cm3  
–  Peak dose to electrical insulator       4 x109 rads  
–  Total nuclear heating in IB magnet     8.7  kW 
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Configuration Studies for Next-Step STs (J. Menard) 

Detailed analysis of impact of blanket internals 
on TBR is being evaluated step-by-step 

Steps: 

1. 1-D infinite Cylinder: 100% LiPb 
breeder with 90% enriched Li 

2. Li17Pb83 confined to OB blanket 
region and blanket behind 
divertor 

3. 2 cm assembly gap between 
blanket modules 

4. FS structure and FCI added to 
homogeneous mixture of 
blanket at top/bottom ends and 
behind divertor only 

5. Materials assigned to 4 cm 
thick OB FW 

6. Materials assigned to side, 
bottom/top, and back walls of 
blanket 

 
To be added: 
7.     IB and OB cooling channels 
8.     SiC FCI  
9.     W Stabilizing shell 
10.   Penetrations. 
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Expect final TBR ≈ 0.95-1.  Options to increase: 
• Thin inboard breeding region (assessing now) 
• Reduce aspect ratio (reduces Qeng, no CS) 



Configuration Studies for Next-Step STs (J. Menard) 

Summary 

• Developed self-consistent A=1.7 Cu TF ST 
configurations w/ high TBR for fluence mission 
– R0 = 1 m  TBR ~ 0.9 
– R0 = 1.7m  TBR ~ 1.0 

• Optimal A for fusion performance with HTS TF 
and small/no inboard breeding or CS is A ≈ 2 
– High confinement may be required to exploit higher 

toroidal field potentially achievable with HTS 
• A ≈ 2 R0 = 3m HTS FNSF / Pilot with fluence 

6MWy/m2 (peak) and Qeng ~ 1 may be feasible 
18 



Configuration Studies for Next-Step STs (J. Menard) 

Backup – A=1.7 Cu TF FNSF 
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Configuration Studies for Next-Step STs (J. Menard) 

Peak radiation damage at PF coils are within allowable  
limits for different coil types (IB: Cu + MgO, OB: LTS) 

• MgO limits:  1011 Gy 
 

• LTS limits (Nb3Sn): 
– Fast neutron fluence: 
   1023 n/m2 (En > 0.1MeV) 

• PF3: 1.15×1023 n/m2 
– Peak Dose to Insulator: 

2×1010 rads 

• PF3: 1.08×1010 rads 
– Peak Nuclear Heating:   

2 kW/m3  
• PF3: 2.2 kW/m3  
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Configuration Studies for Next-Step STs (J. Menard) 

Up/down-symmetric long-leg divertor  q⊥-divertor < 10MW/m2   

even under attached conditions (if integral heat-flux width λq-int > 2mm) 

 
 
 

• Pheat = 115MW, frad=0.8, fobd=0.8, θpol = 2.1ᵒ 

• Rstrike = 2.6m, fexp = 1.4, λq-int =2.05mm, Ndiv = 2 

Pheat (1-frad) fobd sin(θpol)  
2πRstrike fexp λq-int Ndiv 

q⊥-strike ≈ 

Peak q|| = 0.45GW/m2 

1ᵒ angle of incidence 

Peak q⊥ < 10MW/m2 

Eich NF 2013:  λq-int = λq + 1.64 × S, λq = 0.78mm, S ≈ λq (closed divertor) 

Partial detachment expected to 
further reduce peak q⊥ factor of 2-5× 
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Configuration Studies for Next-Step STs (J. Menard) 

FNSF center-stack can build upon NSTX-U design  
and incorporate NSTX stability results 

•Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together) 
– Coolant paths: gun-drilled holes or grooves in side of wedges + welded tube 

•Bitter-plate divertor PF magnets in ends of TF achieve high triangularity 
– NSTX data:  High δ > 0.55 and shaping S ≡ q95IP/aBT > 25 minimizes disruptivity 
– Neutronics:  MgO insulation can withstand lifetime (6 FPY) radiation dose 
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Configuration Studies for Next-Step STs (J. Menard) 

Glidcop 
plates  

Insulator  

Bitter coil insert for divertor coils in ends of TF 
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Configuration Studies for Next-Step STs (J. Menard) 

MgO insulation appears to have good  
radiation resistance for divertor PF coils 
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Configuration Studies for Next-Step STs (J. Menard) 

VV lid / PF 
cryostat 

enclosure 

Full blanket 
assembly 

TF center-
stack 

Upper TF 
horizontal legs Upper dome 

structure located 
on test cell 
shield plug 

TF power 
supplies JT-60SA 

NNBI 

R=1.7m ST-FNS facility layout 
using an extended ITER building  
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Configuration Studies for Next-Step STs (J. Menard) 

ST-FNSF shielding and TBR analyzed with  
sophisticated 3-D neutronics codes  

• CAD coupled with MCNP using UW DAGMC code  
• Fully accurate representation of entire torus  
• No approximation/simplification involved at any step: 

– Internals of two OB DCLL blanket segments modeled in great detail, including: 
•  FW, side, top/bottom, and back walls, cooling channels, SiC FCI 

– 2 cm wide assembly gaps between toroidal sectors 
– 2 cm thick W vertical stabilizing shell between OB blanket segments 
– Ports and FS walls for test blanket / materials test modules (TBM/MTM) and NNBI 

TBM 

LiPb,  
cooling 
channel, 

 FCI 

Heterogeneous OB Blanket Model, 
including FW, side/back/top/bottom 
walls, cooling channels, and SiC FCI 
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Configuration Studies for Next-Step STs (J. Menard) 

Two sizes (R=1.7m, 1m) assessed for shielding, TBR 

Parameter: 
 

Major Radius  1.68m 1.0m     
Minor Radius  0.95m   0.6m  
Fusion Power  162MW 62MW 
Wall loading (avg) 1MW/m2 1MW/m2 

 
TF coils  12  10 
TBM ports  4  4 
MTM ports  1  1 
NBI ports  4  3 
 
Plant Lifetime  ~20 years 
 
Availability 10-50% 
 
  30% avg 

6 Full 
Power 
Years 
(FPY) Neutron source distribution 
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Configuration Studies for Next-Step STs (J. Menard) 

Mapping of dpa and FW/blanket lifetime 
(R=1.7 m Device) 

dpa / FPY 

   Peak = 
   

15.5 dpa / 
FPY 

FW/blanket could operate for 6 FPY 
if allowable damage limit is 95 dpa 
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R=1.7m configuration 

 Peak EOL Fluence = 11 MWy/m2 



Configuration Studies for Next-Step STs (J. Menard) 

Peak radiation damage at PF coils are within allowable 
limits for different coil types (Cu with MgO, LTS/HTS) 

Peak dpa at OB midplane = 15.5 dpa / FPY 

3-D Neutronics Model of Entire Torus 

Dose to MgO insulator = 1.2x1010 Gy  
@ 6 FPY < 1011 Gy limit 

Dose to MgO insulator = 3.1x108 Gy @ 6 
FPY < 1011 Gy limit 

Peak He production at OB midplane = 174 
appm/FPY 

⇒  He/dpa ratio = 11.2 
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R=1.7m configuration 
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Configuration Studies for Next-Step STs (J. Menard) 

0.5MeV NNBI well confined down to ~2MA 

30 



Configuration Studies for Next-Step STs (J. Menard) 

Options to increase TBR > 1 

• Add to PF coil shield a thin 
breeding blanket (∆TBR ~ +3%) 

• Smaller opening to divertor to 
reduce neutron leakage 

• Uniform OB blanket (1m thick 
everywhere; no thinning) 

• Reduce cooling channels and 
FCIs within blanket (need thermal 
analysis to confirm) 

• Thicker IB VV with breeding 

Potential for TBR > 1 at R=1.7m 

PF Coils 
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Configuration Studies for Next-Step STs (J. Menard) 

R0 = 1m ST-FNSF achieves TBR = 0.88 

TBM NBI 

Distribution of T production 

MTM 
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• 1m device cannot achieve TBR > 1 
even with design changes 

• Solution: purchase ~0.4-0.55kg of 
T/FPY from outside sources at $30-
100k/g of T, costing $12-55M/FPY 

 



Configuration Studies for Next-Step STs (J. Menard) 

Impact of TBM, MTM, NBI ports on TBR 
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No ports or penetrations,  
homogeneous breeding zones:   

TBR = 1.03 

Add 4 Test Blanket  
Modules (TBMs) 

TBR = 1.02 (∆TBR = -0.01) 
TBM 
LiPb,  

cooling 
channel, 

 FCI 

1 Materials Test  Module (MTM) 
TBR = 1.01 (∆TBR = -0.02) 

Ferritic 
Steel 

MTM 

4 TBM + 1 MTM + 4 NBI 
TBR = 0.97  

Approx. ∆TBR per port: 

• TBM:   -0.25% 

• MTM:   -2.0% 

• NBI:  -0.75% 



Configuration Studies for Next-Step STs (J. Menard) 

Backup – A=2 HTS FNSF / Pilot 
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Configuration Studies for Next-Step STs (J. Menard) 

Plasma constraints 

• Fix plasma major radius at R0 = 2.5-3m 
– Chosen to be large enough to allow space for HTS neutron 

shield and access Qeng > 1 
• Inboard plasma/FW gap = 4cm 
• Use ε dependent κ(ε), βN (ε) (see next slide)  
• Greenwald fraction = 0.8  
• q* not constrained 

– q* is better ε-invariant than q95 for current limit 
– Want to operate with q* > 3 to reduce disruptivity 

• 0.5MeV NNBI for heating/CD – fixed PNBI = 50MW 
• H98y2 adjusted to achieve full non-inductive CD 
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Configuration Studies for Next-Step STs (J. Menard) 

Engineering constraints 
• Magnet constraints (T. Brown ST-HTS Pilot, K-DEMO) 

– Maximum stress at TF magnet = 0.67-0.9GPa  
– Maximum effective TF current density = 65MA/m2 

– OH at small R  higher OH solenoid flux swing for higher A 

• Shielding / blankets 
– Assume HTS fluence limit of 3-5x1022  
– No/thin inboard blanket, ~1+ m thick outboard blanket 

• 10x n-shielding factor per 15-16cm WC for HTS TF 
• Also 8cm inboard thermal shield  + other standard radial builds 

• Electrical system efficiency assumptions: 
– 30% wall plug efficiency for H&CD - typical of NNBI 
– 45% thermal conversion efficiency - typical of DCLL 

• Also include pumping, controls, other sub-systems 
• See Pilot Plant NF 2011 paper for more details 
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Configuration Studies for Next-Step STs (J. Menard) 

HTS performance vs. field and fast neutron fluence 
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Configuration Studies for Next-Step STs (J. Menard) 

Very preliminary work suggests annealing may be able to 
reverse some effects of radiation damage in HTS conductors 
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Configuration Studies for Next-Step STs (J. Menard) 

OH located inside of TF bore:  854 Mpa Tresca stress with 4.0 B0 and 176.5 TF Bmax 

For AR 2 device: 

OH flux:  2 Vs with 70 Jc solenoid and 19.8 T  

Added space 
between OH 

and TF 

60 cm WC 
uses VV 

shield and 
shield in 

front of it. 

Radial build (includes small OH) - T. Brown  
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Configuration Studies for Next-Step STs (J. Menard) 

TF and OH magnet parameters vs. aspect ratio  
using models from Brown and Zhai  
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Configuration Studies for Next-Step STs (J. Menard) 

Assessing long-leg /  
deep-V divertor 

 

• PF coils outside TF 
• Increase strike-point radius 

~2× to reduce q|| and peak 
heat flux 

• Divertor PFCs in region of 
reduced neutron flux 

• Narrow divertor aperture for 
increased TBR 

• More space for breeding at 
top/bottom of device 
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Configuration Studies for Next-Step STs (J. Menard) 

Long-leg divertor aids heat flux reduction  
A=2 HTS TF FNSF/Pilot 

λq ~ 1mm, assume S ≈ λq  (closed divertor) 
(T. Eich NF 2013) (Partial) detachment likely reduces peak q⊥ by further 

factor of 2-4 
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Configuration Studies for Next-Step STs (J. Menard) 

Can also exhaust onto back of OB blanket 
(like vertical target in conventional divertor) 

λq ~ 1mm, assume S ≈ λq  (closed divertor) 
(T. Eich NF 2013) (Partial) detachment likely reduces peak q⊥ by further 

factor of 2-4 
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Configuration Studies for Next-Step STs (J. Menard) 

Latest HTS-ST: R=3m, A=2, Pfusion~ 500MW, Qeng~1-1.5 
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Configuration Studies for Next-Step STs (J. Menard) 

R=3 m Configuration and Key Parameters 

Major Radius 3   m  
Minor Radius 1.5   m 
Fusion Power 556 MW 
 
 
 
 
 
10 Sectors 
 
 
 
 
 
 
Plant Lifetime ~10.3  years 
 
Availability ~30%  
   
 
 

3.1 Full Power Years 
(FPY) 
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Configuration Studies for Next-Step STs (J. Menard) 

Neutron Wall Loading Distribution 

Evaluated with 3 methods: 
 
  Average NWL  1.13  MW/m2 

 Peak IB NWL  1.57   MW/m2 
 Peak OB NWL  2.15   MW/m2 
 Peak Div NWL  0.42   MW/m2 
 

OB IB 
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Configuration Studies for Next-Step STs (J. Menard) 

Nuclear Analysis Performed with 
Sophisticated 3-D Neutronics Codes 

• CAD coupled with MCNP using UW DAGMC code.  

• Fully accurate presentation of entire torus.  

• Neutron source model on R-Z grid, presenting fusion 
power density. 

• No approximation or simplification involved in 3-D model. 

• Evaluated: 
• Neutron wall loading distribution 

• Radiation damage at IB magnet 
• Tritium breeding ratio (ongoing). 
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3-D Model 
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Configuration Studies for Next-Step STs (J. Menard) 

Radiation Limits 
 
Overall TBR ~ 1 
   (for T self-sufficiency) 
 
 
Damage to RAFM steel structure 20 dpa  – GEN-I 
  < 50 dpa  – GEN-II 
  > 65 dpa  – ODS (NS) 
 
 
Helium Production  1   ?  He appm 
   (for reweldability of FS) 
 
 
 
HTS Magnet (@ 20-40 K): 
 Peak fast n fluence to HT superconductor (En > 0.1 MeV) 5 x 1018 n/cm2 

 Peak nuclear heating @ WP  5 mW/cm3  
 Peak nuclear heating @ coil case  ? mW/cm3

  
 Peak dose to electrical insulator  5-10 x1010 rads  
 Total nuclear heating in 10 TF coils ? kW 
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Configuration Studies for Next-Step STs (J. Menard) 

A=2 HTS ST Shielding Assessment 
• Focus on inboard (IB) shield - main functions are: 

– Protect IB magnet for machine lifetime (3.1 FPY) 
– Enhance OB breeding by reflecting neutrons to OB 
– Generate low decay heat to control temperature response during 

accident  avoid using WC filler near FW. 
• Assessed impact of candidate IB materials 

– Ferritic steel, tungsten carbide, hydrides, water, borated water, and 
heavy water) on magnet shielding as well as reflecting neutrons to OB 
blanket to enhance TBR.  

• Two-layer IB shield presents best (non-breeding) option: 
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Configuration Studies for Next-Step STs (J. Menard) 

HTS-ST Shielding Assessment (Cont.) 

• Fast neutron fluence to HTS drives IB shield design. 

• Combination of WC and H2O represents superior 
shielding option as it helps reduce both fluence and 
magnet heating. 

• Avoid: 
– Using B-H2O and hydrides (having less shielding performance 

compared to WC/H2O) 
– Straight radial assembly gaps. 

• 3-D analysis confirmed radiation damage at IB magnet are 
below limits: 

 Peak fast n fluence to HTS (En > 0.1 MeV) 4.3 x 1018 n/cm2 

 Peak nuclear heating @ WP   1.7  mW/cm3  
 Peak dose to electrical insulator   4 x109 rads  
 Total nuclear heating in IB magnet  8.7  kW 
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Configuration Studies for Next-Step STs (J. Menard) 

• Dual-cooled LiPb blanket (DCLL) – preferred US blanket concept for DEMO and 
power plants.  

• 1 m thick OB blanket divided into two segments (to accommodate vertical 
stabilizing shells)  

• He-cooled structural ring (SR) supports 20 OB blanket sectors. 

• Several ports penetrate VV, SR, and blanket. 

• During operation, 4 tritium breeding modules (TBM) and one Materials Testing 
Module (MTM) develop more advanced blanket/materials technologies for GEN-
II, III, and IV DCLL blanket systems.  

• To accurately estimate the overall TBR, 3-D model included details of blanket 
internals and externals: 
– 2 cm wide assembly gaps between toroidal sectors 
– Internals of two OB DCLL blanket segments modeled in great details, including:  
       FW, side, top/bottom, and back walls, cooling channels, SiC  Flow Channel Inserts (FCI). 
– 2 cm thick W vertical stabilizing shell between OB blanket segments.  
– Ports (4 TBMs, 1 MTM,  NNBIs). 

Blanket Design and Breeding Potential 

3-D Blanket Model 
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Mapping of Tritium Production 

Horizontal Cross Section at OB Midplane Vertical Cross Section Through Blanket regions 

Inner segment of OB blanket provides highest breeding 
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Shield design and HTS radiation limits are critical 
issues for device size, lifetime 
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