New Results from Non-solenoidal Startup via Local Helicity Injection on PEGASUS and Projections for NSTX-U

#### Joshua Reusch

J.L. Barr, G.M. Bodner, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, B.T. Lewicki, J.M. Perry, D.J. Schlossberg

And the PEGASUS team



University of Wisconsin-Madison 18<sup>th</sup> International Spherical Torus Workshop

Princeton, NJ

Nov. 6<sup>th</sup>, 2015



PEGASUS Toroidal Experiment



#### Local Helicity Injection (LHI) is a Scalable Non-solenoidal Startup Technique



- Unstable current streams form tokamak-like state via Taylor relaxation
- Compact, modular, and appears scalable to MA-class startup



#### Multi-year Technology Development has Produced Robust, High Performance Injectors

- Injector requirements are formidable:
  - $I_{inj} > 2kA, V_{inj} > 1kV$
  - High  $J_{inj}$  (~ 1kA/cm<sup>2</sup>)
  - 1-2 cm from LCFS
  - No deleterious PMI
- Robust high V<sub>inj</sub> achieved
  - Cathode shaping and shielding mitigate cathode spots
  - Shield rings and local limiter (not shown) prevent arc-back
  - ~3x increase in helicity input





#### Injector Impedance Model Supports Extrapolation to Larger Scale

- Injector impedance model developed and tested\*
  - Quasi-neutrality  $(I_{inj} \sim n_{edge} V_{inj}^{0.5})$ , expanding double layer  $(I_{inj} \sim n_{arc} V_{inj}^{0.5})$



Impedance Model:

$$I_{inj} = \operatorname{Min}[n_{edge}, \beta n_{arc}]e \sqrt{\frac{2eV_{inj}}{m_e}}A_{inj}$$

- Strong influence on injector design and operation (V<sub>LHI</sub> ~ V<sub>inj</sub>)
  - Sets power supply requirements
  - Model gives control actuator for  $V_{LHI}(t) \rightarrow I_p(t)$



4 \* E.T. Hinson, Ph.D. Thesis, UW-Madison, 2015.



5

#### Physics of LHI Encapsulated in a Hierarchy of Models

**Taylor Relaxation** 

Helicity Conservation

1. Maximum  $I_p$  limits\*

$$I_p \le I_{TL} \sim \sqrt{\frac{I_{TF}I_{inj}}{W}}$$

$$V_{LHI} pprox rac{A_{inj}B_{\varphi,inj}}{\Psi}V_{inj}$$

2. 0-D power-balance  $I_p(t)$ 

$$I_p \left[ V_{LHI} - V_{IR} + V_{IND} \right] = 0; \ I_p \le I_{TL}$$

#### 3. 3D Resistive MHD (NIMROD)\*\*

\*D.J. Battaglia, et al. Nucl. Fusion **51** (2011) 073029. \*N.W. Eidietis, Ph.D. Thesis, UW-Madison, 2007. \*\*J. O'Bryan, Ph.D. Thesis, UW-Madison, 2014. \*\*J. O'Bryan, C.R. Sovinec, Plasma Phys. Control. Fusion **56** 064005 (2014)

#### Reconnecting LHI Current Stream





# 0-D Power Balance Model Tracks the Dynamic LHI I<sub>p</sub>(t) Evolution

- Lumped parameter model:
  - Inputs:  $R_0(t)$ ,  $I_p(0)$ ,  $\eta_0$ ,  $\kappa(t)$ , a(t),  $\ell_i(t)$
  - Analytic low-A descriptions of  $L_p^*$ ,  $B_z^{**}$ ,  $V_{eff}(t)$

$$V_{LHI} = \frac{A_{inj}B_{\varphi,inj}}{\Psi}V_{inj}$$

$$V_{PF} = \sum_{coils}\frac{d}{dt} \left[\psi_{PF-Plas}\right] = \frac{\partial}{\partial t} \left[M_V \pi R_0^2 B_V \Big|_{R_0}\right]$$

$$B_V = \frac{\mu_0 I_p}{4\pi R_0} \left\{\frac{1}{\mu_0} \frac{\partial L_e}{\partial R} + \frac{\ell_i}{2} + \beta_p - \frac{1}{2}\right\}$$

$$M_V(\varepsilon,\kappa) = \frac{(1-\varepsilon)^2}{(1-\varepsilon)^2 c(\varepsilon) + d(\varepsilon)\sqrt{\kappa}} \quad c(\varepsilon) = 1 + 0.98\varepsilon^2 + 0.49\varepsilon^4 + 1.47\varepsilon^6}{d(\varepsilon) = 0.25\varepsilon(1+0.84\varepsilon - 1.44\varepsilon^2)}$$

$$V_{geo} = \frac{d}{dt} \left[L_p I_p\right] = \frac{d}{dt} \left[L_e I_p\right] + \frac{1}{I_p} \frac{d}{dt} \left(\frac{1}{2} L_i I_p^2\right) \quad a(\varepsilon) = (1 + 1.81\sqrt{\varepsilon} + 2.05\varepsilon) \ln\left(\frac{8}{\varepsilon}\right) - (2.0 + 9.25\sqrt{\varepsilon} + 1.21\varepsilon)$$

$$L_e = \mu_0 R_0 \frac{a(\varepsilon)(1-\varepsilon)}{1-\varepsilon + \kappa b(\varepsilon)} \quad b(\varepsilon) = 0.73\sqrt{\varepsilon} \left(1 + 2\varepsilon^4 - 6\varepsilon^5 + 3.7\varepsilon^6\right)$$

5 \*S.P. Hirshman and G.H. Nielson 1986 *Phys. Fluids* **29** 790

\*\*O. Mitarai and Y. Takase 2003 Fusion Sci. Technol.



#### 0-D Power Balance Model Tracks the Dynamic LHI $I_{p}(t)$ Evolution

- Model elements:
  - Inputs:  $\langle \eta(t) \rangle$ ,  $R_0(t)$ , shape(t),  $V_{ini}(t)$ ,  $\ell_i(t)$
  - $<\eta>$  calculated from Spitzer assuming characteristic <T<sub>e</sub>>

0.5

0.0

-0.5

<sup>0.0</sup> R [m]

0.5

Z [m]

- Model provides relative contribution from  $V_{I HI}$  and  $V_{IND}$ 
  - Significant V-s from Shape(t)

All of this hinges on understanding of V<sub>IR</sub> term

$$I_p \left[ V_{LHI} - V_{IR} + V_{IND} \right] = 0; \ I_p \le I_{TL}$$



#### NIMROD Describes Edge Reconnection Current Drive Mechanism



### Observed current rings in PEGASUS (pre-tokamak plasma)



- At high  $I_p$ : streams persist in NIMROD; no visible streams in Pegasus
- Reconnection localized to edge, field most stochastic at edge
- \* J. O'Bryan, et al., Physics of Plasmas, 19, 080701 (2012)

8

J. O'Bryan, C.R. Sovinec, Plasma Phys. Control. Fusion 56 064005 (2014)



9

#### Anomalous Ion Heating Confirms Existence of Strong Reconnection Activity

- T<sub>i</sub> scales with expectations from reconnection experiments\*
  - $~T_i \sim B^2 /\!\! < \!\! n_e \!\! > \! \sim I_{inj} V_{inj}{}^{0.5}$





 Anomalous heating (T<sub>i</sub> > T<sub>e</sub>) persists through LHI phase



\* J. Yoo, et al., Phys. Rev. Lett., vol. 110, no. 21, p. 215007, May 2013 Y. Ono, et al., Plasma Phys. Control. Fusion, vol. 54, no. 12, p. 124039, Dec. 2012.



#### Stream Interaction Manifests as Edge Localized MHD Burst

- MHD bursts accompany I<sub>p</sub> growth
  - n=1 line tied kink structure
  - Localized in edge

- MHD analysis confirms existence of unstable current streams in edge\*
  - Coherent streams persist at high I<sub>p</sub>, consistent with NIMROD
  - Reconnection event at peak of MHD burst

 Suggests that majority of stochastic region localized to edge



### Edge Localized Reconnection and Strong V<sub>IND</sub> may Support Good Core Confinement, Scaling

- First TS profile: peaked in core
  - Does not appear highly stochastic across profile
  - Comparable to Ohmic L-mode
  - Drive:  $V_{IND}$  (across plasma)  $V_{LHI}$  (edge)



Effect of Confinement Scaling



- Projections to NSTX-U, beyond depend critically on confinement
  - Two zone (edge vs. core) confinement?

#### Gaps in Understanding Must be Addressed for Extrapolation to NSTX-U and Beyond



- Critical issue: unraveling effect of strong inductive drive
- Other important issues include: B<sub>TF</sub>, I<sub>p</sub> scalings; Long pulse performance





#### Divertor Injection: Vary Injector Geometry to Separate Inductive and Helicity Drive Effects

- 3-4x increased helicity input
- Minimal inductive drive: ~ fixed geometry
  - Separates effects: edge reconnection Vs. inductive drive
  - Confinement measurements in transport equilibrium
- Lower R → increased B<sub>TF</sub> test
- Allows higher I<sub>p</sub> startup

#### **Divertor Injector CAD**





### Critical Issues for LHI Predictive Understanding Addressed by Pegasus-Upgrade



- Increased  $B_{TF}$ ,  $t_{pulse}$  extends scalings to NSTX-U relevant levels
  - Injector  $B_{TF} \sim 0.8T$ : reconnection current drive; poloidal null formation; injector physics
  - Pulse length ~100 ms: variable inductive drive; injector integrity
  - Diagnostics: CHERS via DNB; multi-point probe arrays, SXR camera



#### Progress in Experiment and Modeling: Moving Towards MA-class Non-solenoidal Startup

- Improved injectors: robust operation at > 1kV
  - Injector impedance model gives actuator for  $V_{LHI}$ , PS design point
- 0-D power balance model provides prediction of  $I_p(t)$ 
  - Input power primarily from  $V_{IND}$  in present tests
  - Confinement scaling is critical unknown
- Surprisingly good core confinement indicated by TS
  - Peaked core  $T_e \sim 120$  eV comparable to Ohmic L-mode
  - Coupled with NIMROD picture, may indicate 2-zone confinement
- Divertor injectors and Pegasus-U to address critical scaling issues for NSTX-U and beyond









## LHI on Pegasus utilizes small active arc current sources located in the SOL

- Injectors are washer gun style plasma arc sources
- 2-stage circuit: arc and injection circuits "daisy chained"
- Uses current stiff source, voltage set by plasma physics





#### Model Applied to NSTX-U Geometry for Initial $I_p \sim 1$ MA Start-up Scenario Prediction



THE UNIVERSITY

\*C. Neumeyer et all (2009) 23rd IEEE/NPSS Symposium on Fusion Engineering

\*\*C. Neumeyer (2001) "NSTX Internal Hardware Dimensions" http://nstx.pppl.gov/nstx/Engineering/NSTX\_Eng\_Site/Technical/Machine/NSTX\_Engr\_Machine\_Dims\_cm.html

J.L. Barr, EPR, Madison, WI, Aug. 7th, 2014

# Indirect evidence of localized current filaments throughout the LHI drive phase also observed.

- NIMROD predicts streams remain coherent in the edge at high I<sub>p</sub>
- Bulk plasma current sustained by continued reconnection events





 Correlation analysis of edge Mirnov array show source is localized in space

