

Application of merging/reconnection heating for spherical tokamak in MAST

Hiroshi Tanabe

(tanabe@ts.t.u-tokyo.ac.jp)

T. Yamada², K. Yamasaki¹, T.Watanabe¹, K. Gi¹, M. Inomoto¹, M. Gryaznevich³, R. Scannell³, N. Conway³, B. Crowley³, C. Michael³ and Y. Ono¹

¹ Graduate School of Frontier Sciences, University of Tokyo, Tokyo 113-0032, JAPAN
 ² Faculty of Arts and Science, Kyusyu University, Fukuoka, 819-0395, JAPAN
 ³ CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

Outline

- Reconnection studies in MAST
 - --- latest report on MAST M9 campaign ---

Contents:

- > <u>Detailed profile measurement</u> of T_e , n_e and T_i . (New ion Doppler tomography diagnostics installed)
- > <u>2D imaging measurement</u> of T_e , n_e and T_i . (Magnetic reconnection heats locally electrons at the X point and ions globally downstream.)
- > Energy relaxation of characteristic temperature profile in the time scale of *τ^E_{ei}* → <u>triple peak</u>
 > Effect of <u>reconnecting field</u> and <u>guide field</u>.

Typical waveform of "standard shot" in MAST

Thomson scattering measurement of *T_e* and *n_e* profile

130 chords YAG-TS revealed two types of characteristic heating profile

Faster time scale with Δt = 100μs: direct electron heating at X point

shot 25740 ($I_{P3} \sim 200$ kAturn)

Slower time scale comparable to ion-electron energy relaxation time

2D Thomson scattering measurement of T_e and n_e

In the past collaboration, no T_i profile measurement during startup \rightarrow a new 32 chords ion Doppler tomography was installed on MAST.

2D measurement of T_i (ion Doppler tomography) and n_e (YAG-TS): outflow heating is confined at the closed flux surface of reconnected field.

CCFE Reference two fluid simulation by P. Browning et.al.

For their HIFI simulation which include toroidal effect, similar bulk ion heating downstream was predicted. (fundamental viscosity dissipation term (Braginskii) included.)

CCFE With the delay of comparable time scale of τ_{eii}^{E} collisional coupling between electrons and ions to equilibrate both temperature was observed.

Achieved ion heating scales $B_{rec}^2 \propto I_{p3}^2$

Achieved startup parameter mostly depends on reconnecting field B_{rec} which is controlled by startup PF coil current I_{p3} .

Application of reconnection startup for CS-less operation: Merging startup saves significant amount of solenoid flux.

Scenario development for steady ST scenario

If the desired plasma current is same as the startup value, rapid I_p startup and steady operation is also possible!

Summary

M9 experiment of *Reconnection Studies* has successfully finished and revealed:

- 1: Highly localized electron heating at the X point
- 2: Downstream bulk ion heating by outflow damping
- 3: Both profile relaxation \rightarrow triple peak distribution
- 4: *B_t* contributes localized electron heating at the X point but does not for bulk ion heating downstream
- 5: Achieved bulk ion heating $\propto B_{\rm rec}^2 \sim B_p^2$

Those results will be submitted as follows:

to be published at the end of next week (PRL)

- **1**: <u>Electron and ion heating characteristics during magnetic reconnection in MAST.</u>
- 2: More detailed reports (POP or PPCF?)
- **3: Scenario development for spherical tokamak**

Physics issues: What happens at the X point?

- > Fast electron scenario?
 - → UTST (M. Inomoto (Oral / Friday) and K. Yamasaki (poster / today))

> Plasmoid?

- → UTST (M. Inomoto (Oral / Friday) and K. Yamasaki (poster / today))
- → TS-3: effect of inflow drive? (Y. Ono (extended / oral))

> Heat transport?

 \rightarrow Transport analysis with ASTRA code has been started by M. Gryaznevich.

Engineering issues:

> Scenario development by external PF coils

- → UTST (M. Inomoto (Oral / Friday) and K. Yamasaki (poster / today)) (Similar scenario (DNM) might be also tried in MAST-U using internal PF (M. Gryaznevich))
- > Further upgrade scenario New fund: 1MGBP!
 - \rightarrow TS-U project by Y. Ono (extended oral / today)
 - → ST40 project by M. Gryaznevich (oral / yesterday)