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Motivation

« Target power loads are a concern for future machines

« Challenge in spherical tokamaks due to the smaller area for power
deposition

 Recent work has focussed on a number of areas concerning heat loads
— SOL widths: Predictions for ITER based on new scalings are narrow
— Filaments: How much power falls outside the main strike point?
— ELMs: Power loads in future devices too high, need to mitigate

« MAST-U ideally placed to investigate control of divertor power loadings
— Super-X divertor
« Enhanced radiation, larger area for power deposition
— Investigation of power loads requires extensive IR coverage
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Infrared thermography on MAST

Routine IR coverage across the upper and lower divertor
Lower divertor: Medium wavelength camera (MWIR)

— Filtered to 4.5 — 5.0 um range

— Up to 10 kHz possible, typically operated at 5 kHz 15
Upper divertor: Long wavelength camera (LWIR)

— 7.6 —-9.0 um range

— Up to 20 kHz possible, typically operated at 7.5 kHz  os
Field of view of cameras covers the inner and outer _
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Infrared thermography on MAST

« Power balance: Use to determine the effect of surface layers
— Compare total energy to divertor with energy leaving plasma by integrating;

ABS
Psoi=Pnei~ + Ponmic = Prad - dW/dt
« Langmuir probes can be used to determine the power to the divertor

— T, affects the calculated power; use a retarding field energy analyser? to
measure T,

— Accounting for the ratio of T/T, gives good agreement with the IR
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SOL fall off lengths

« Target power fall off lengths characterised by the fit by Eich*
— Exponential fall off in the SOL convoluted by a Gaussian for PFR diffusion

_ 5)2_(5)] (S_§>+
q(8) = 5-exp [(2/1 Ao fe erfe 21, S.fy) " b

« MAST profiles well fitted by this
form

S = R - RO
MAST#27743 245ms

. Eich fit
C:IE_ 3 lq=5.29 mm
« Investigate the scaling of the % S =278 mm
heat flux width on MAST <
— Determine if the MAST data 2°
are consistent with scalings ki
suggesting: % 1
o
MTER - 1 mm S
q 0

* Eich et al PRL 2011
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SOL fall off lengths

Regression performed with major plasma parameters in both L and H mode
Agm()de[mm]
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2Elmore et al, in prep
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Filament measurements

« Filament heat fluxes can extend beyond the footprint defined by 4,

— Power is deposited in regions beyond the divertor
— MAST-U has a close fitting wall onto which this power can fall

IR data show the filamentary nature of the power to the target
— Filaments in the raw data can be correlated with peaks in the profiles

MAST#29271 312 ms
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FiIlament measurements

Determine the filament size from the peaks seen in the IR data
— Identify the location of the peaks via background subtraction
— Fit the peaks with a Gaussian to characterise the width
Filament radial sizes at the target are of the order 5 mm
— Filaments are separated by approximately 15 mm at the target

Power carried to the outer divertor is small but dominated by isolated
filaments
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FiIlament measurements

« Visible imaging of the filaments in MAST is performed at the midplane
* Relate the target filament size and the midplane filament size

— Field line tracing: toroidal extent at the midplane manifested as radial extent
at the target

) ¢mid

Thornton et al PPCF 57 (2015) 115010
AJ Thornton et al ISTW-2015, Princeton, US 4th November 2015 @, CCFE

8/21 AM CENT RF_"

FUSION ENERGYS



FiIlament measurements

« Visible imaging of the filaments in MAST is performed at the midplane
* Relate the target filament size and the midplane filament size

— Field line tracing: toroidal extent at the midplane manifested as radial extent
at the target

« Directly compare the size at the midplane from two different diagnostics
— IR data: toroidal size 5 -8 cm
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FiIlament measurements

« Visible imaging of the filaments in MAST is performed at the midplane
* Relate the target filament size and the midplane filament size

— Field line tracing: toroidal extent at the midplane manifested as radial extent
at the target

« Directly compare the size at the midplane from two different diagnostics
— IR data: toroidal size 5 -8 cm
— Visible data: toroidal size ~ 5 cm
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ELM divertor heat loads

« Control of the ELM heat flux is a key issue for ITER

— Investigation of ELM control via resonant magnetic perturbations has been
performed on MAST*

« Mitigation has been achieved using RMP fields
— Mitigation is effective using RMPs with a range of toroidal mode numbers

— I(RMP) = 5.6 kAt MAST#27204
€ 1.0+ -
L
= _ -
0.0
0.25 0.30 0.35 0.40 0.45 0.50
Time (s)

* Kirk et al NF 2015
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ELM divertor heat loads

« Control of the ELM heat flux is a key issue for ITER

— Investigation of ELM control via resonant magnetic perturbations has been
performed on MAST*

« Mitigation has been achieved using RMP fields*
— Mitigation is effective using RMPs with a range of toroidal mode numbers
— Anincrease in the ELM frequency and decrease in the ELM energy is seen
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ELM divertor heat loads

 Reductionin the ELM energy generates a reduction in the peak heat flux
— Results show a halving of the ELM energy, halves the peak heat flux
— Change in wetted area could explain non-zero offset seen in data
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ELM divertor heat loads

Reduction in the ELM energy generates a reduction in the peak heat flux
— Results show a halving of the ELM energy, halves the peak heat flux
— Change in wetted area could explain non-zero offset seen in data

Energy impact factor accounts for change in wetted area and duration
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Strike point splitting

« Application of RMP seen to generate splitting of the strike point
— Application of n=3 RMP causes strike point splitting

» Onset of splitting occurs when other effects seen (density pump out,
increase in ELM frequency)

— Concern in future devices that the splitting of the strike point could lead to
uneven erosion of the divertor

* |Increases heat loads e MAST#25953 MAST#25965
<8R . a
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\:m 05F
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« Apply arotating RMP field
to move the splitting

— Performed in MAST
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Strike point splitting
« Measurements of the splitting agree well with vacuum modelling

« Rotation of the RMP field gives rise to motion of the strike point splitting

— Rotation of 30° performed, giving a motion of the splitting of order 1 cm
across the tile

— The level of mitigation is unaffected by the rotation
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MAST-U IR diagnostics

MAST-U allows a wide range of different divertor configurations:
conventional, Super-X and snowflake

— Many regions where the power load to the target needs to be monitored

Conventional Super-X

For IR coverage to monitor 5 |
the strike points require;

— Re-entrant port at the Tl
midplane to view the
inner strike point and
wide angle view E !

— Coverage in both upper
and lower divertor !
chambers

AJ Thornton et al ISTW-2015, Princeton, US
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MAST-U IR diagnostics

« MAST-U allows a wide range of different divertor configurations:
conventional, Super-X and snowflake

— Many regions where the power load to the target needs to be monitored

AJ Thornton et al ISTW-2015, Princeton, US
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MAST-U IR diagnhostics

« MAST-U allows a wide range of different divertor configurations:
conventional, Super-X and snowflake

— Many regions where the power load to the target needs to be monitored

AJ Thornton et al ISTW-2015, Princeton, US
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MAST-U IR diagnostics

« MAST-U allows a wide range of different divertor configurations:
conventional, Super-X and snowflake

— Many regions where the power load to the target needs to be monitored
« Quter target for the conventional divertor: ~3 mm/pixel
» OQuter target for the Super X divertor: ~2-10mm /pixel

2.

Conventional outer divertor Super-X divertor view

J Harrison and K Hawkins
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Summary

IR thermography has been extensively used on MAST, permitting study of;
— SOL widths:
« Support the results of conventional devices predicting A “f~ 1mm

» Further work required to better understand the power spreading
— Filaments:

« Measurements of the width at the divertor are consistent with the
upstream width

» Power carried to the outer divertor is small but dominated by isolated
filaments

— ELM mitigation
« ELM mitigation yields a 50% reduction in the peak power load
* RMP generate strike point splitting

» Rotation of RMP fields gives rise to motion of the splitting & spreading of
power load

« MAST-U has extensive IR views to investigate the effect of the Super-X
divertor

— Wide range of views required to provide full coverage of configurations

AJ Thornton et al ISTW-2015, Princeton, US 4" November 2015 @ CCFE

21/21 CULHAM CENTREZ
FUSION ENERGY=



