### M3D-C<sup>1</sup> Simulations of the Plasma Response to Magnetic Perturbations in the NSTX-U Snowflake Divertor

Gustavo Paganini Canal

in collaboration with

### N.M. Ferraro<sup>1</sup>, D. Ciro<sup>2</sup>, T.E. Evans<sup>1</sup>, A. Wingen<sup>3</sup>, J-W. Ahn<sup>3</sup>, H. Frerichs<sup>4</sup>, O. Schmitz<sup>4</sup>, V.A. Soukhanovskii<sup>5</sup> and I. Waters<sup>4</sup>

<sup>1</sup>General Atomics, San Diego, CA, USA <sup>2</sup>University of São Paulo - IFUSP, São Paulo, SP, Brazil <sup>3</sup>Oak Ridge National Laboratory, Oak Ridge, TN, USA <sup>4</sup>University of Wisconsin – Madison, Madison, WI, USA <sup>5</sup>Lawrence Livermore National Laboratory, Livermore, CA, USA

> 18<sup>th</sup> International Spherical Torus Workshop Princeton University, 3-6 November, 2015





#### The development of new divertor configurations is crucial on the road to a fusion reactor

- Steady-state power handling in DEMO and future fusion reactors will only be possible with plasmas operated with high core radiation fraction
  - About 90% of the heating power has to be radiated [M. Kotschenreuther, Phys. Plasmas (2007)]
  - ELMs will not be tolerated at all [H. Zohm, Nucl. Fusion (2013)]
- Alternative solutions have to be researched to mitigate the risk that highly radiating regimes may not be extrapolated towards DEMO
  - The snowflake (SF) is one of several alternative divertor configurations [D.D. Ryutov, Phys. Plasmas (2007)]
- Solution for ELMs come in the form of applied 3D magnetic perturbations [A. Loarte, Nucl. Fusion (2014)]
  - The effect of 3D magnetic perturbations in the SF configuration has to be investigated

Improved physics understanding & modeling of 3D fields in the SF divertor



G.P. Canal, ISTW, Princeton, November, 2015

ΓΧ-ΙΙ

#### Snowflake configuration proposed as a possible solution to reduce target power loads

• Snowflake  $\equiv$  second order null point [D.D. Ryutov, Phys. Plasmas (2007)]



AN DIEGO

- Two additional divertor legs
- Lower poloidal field near the ulletnull point
  - Larger flux expansion
  - Larger divertor volume
  - Longer connection length



# The snowflake configuration is more sensitive to magnetic perturbations than a single-null configuration

• The effect of magnetic perturbations in the plasma is expected to be magnified in the SF configuration due to its lower  $B_{\theta}$  near the null-point



#### The SF configuration provides an excellent environment to study the plasma response to magnetic perturbations





#### NSTX discharge provides the equilibrium profiles for the ISOLVER calculations of the NSTX-U SF divertor

- Reference Discharge (#132543 @ 700 ms)
  - $-I_{P} = 1.0 MA$
  - $-B_{T} = -0.44 T$
  - $P_{NBI} = 6.0 MW$
  - $-\kappa = 2.1$
  - $\delta_{top} = 0.37$
  - $\delta_{bot} = 0.71$



NATIONAL FUSION FACILITY

N DIEGO



NSTX







## ISOLVER calculations of the NSTX-U SF divertor assume approximately the same total plasma pressure profile

- SF configurations generated by ISOLVER have approximatly the same P', FF' and total plasma pressure of the reference NSTX discharge
  - Total pressure profile does not depend on divertor configuration [V.A. Soukhanovskii, *Phys. Plasmas* (2012)]







G.P. Canal, ISTW, Princeton, November, 2015



### Configuration is varied from a SN reference to a SF

- An exact SF configuration ( $\sigma = 0$ ) features  $\vec{\nabla}B_{\theta,npt} = 0$ 
  - $\rightarrow \vec{\nabla}B_{\theta,npt}$  is a measure of the "proximity" of a divertor configuration from an exact SF









#### Estimate the Plasma Response to Externally Applied Non-Axisymmetric Magnetic Fields Using Modelling

<u> dn</u> .

Эt

- The M3D-C<sup>1</sup> code is a two-fluid, resistive MHD code<sup>1</sup>
- The M3D-C<sup>1</sup> computational domain includes the confined plasma, the separatrix and the open field-line region
- Unstructured mesh allows increased spatial resolution near rational surfaces and x-point
- Two-fluid effects governed by ion inertial length, d<sub>i</sub>
  - Electron and ion fluids decouple at finite d<sub>i</sub>



<sup>1</sup>N. Ferraro, Phys. Plasmas (2010)

G.P. Canal, ISTW, Princeton, November, 2015

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) &= 0\\ \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) &= \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi\\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p &= -\Gamma p \nabla \cdot \mathbf{u} - \frac{d_i}{n} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n}{n} - \nabla p_e\right)\\ -(\Gamma - 1) \nabla \cdot \mathbf{q}\\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E}\\ \mathbf{E} &= -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{d_i}{n} (\mathbf{J} \times \mathbf{B} - \nabla p_e)\\ \Pi &= -\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right]\\ \mathbf{q} &= -\kappa \nabla \left(\frac{p}{n}\right) - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla \left(\frac{p_e}{n}\right)\\ \mathbf{J} &= \nabla \times \mathbf{B}\end{aligned}$$



### Two-fluid effects significantly enhance resonant field components in the plasma edge of the SN configuration

- Vacuum field reveals broad Fourier spectrum of poloidal harmonics in the plasma edge
  - Spectrum depends on the configuration of perturbation coil currents (n = 1, 2, etc.)
- Two-fluid effects amplify resonant components in the plasma edge
  - Indicative of stable tearing modes near marginal stability in the unperturbed case
- Single-fluid calculations show strong screening of perturbation fields





## Enhancement of resonant field components is caused by low electron fluid rotation in the plasma edge

• Region of enhancement of resonant components coincides with region of low electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)]







# Enhancement of resonant field components is caused by low electron fluid rotation in the plasma edge

• Region of enhancement of resonant components coincides with region of low electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)]



- Enhanced resonant fields indicate the formation of magnetic islands
  - Two-fluid calculations predict stochastic layer in the plasma edge as large as in the vacuum field approach



# M3D-C<sup>1</sup> calculations predict strong stochastization of plasma edge with increasing perturbation coil current

- Vacuum, two-fluid and single-fluid calculations predict the formation of magnetic islands in the plasma edge
  - For sufficiently large coil currents, islands overlap leading to stochastic layer in the edge



Flux surfaces in the plasma edge are all broken in the vacuum calculations





# M3D-C<sup>1</sup> calculations predict strong stochastization of plasma edge with increasing perturbation coil current

- Vacuum, two-fluid and single-fluid calculations predict the formation of magnetic islands in the plasma edge
  - For sufficiently large coil currents, islands overlap leading to stochastic layer in the edge



 Stochastic edge does not increase significantly with perturbation coil current in the two-fluid approach





# M3D-C<sup>1</sup> calculations predict strong stochastization of plasma edge with increasing perturbation coil current

- Vacuum, two-fluid and single-fluid calculations predict the formation of magnetic islands in the plasma edge
  - For sufficiently large coil currents, islands overlap leading to stochastic layer in the edge



Single-fluid calculations predict a thinner stochastic edge than vacuum and two-fluid calculations





# Two-fluid effects significantly enhance resonant field components in the plasma edge of the SF configuration

- Plasma response in a SF is not significantly different than in a SN
  - Differences come from slightly different qprofiles



 Differences in q-profile come from change in poloidal current







## Enhancement of resonant field components is caused by low electron fluid rotation in the plasma edge

• Region of enhancement of resonant components coincides with region of low electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)]







# Enhancement of resonant field components is caused by low electron fluid rotation in the plasma edge

• Region of enhancement of resonant components coincides with region of low electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)]



- Enhanced resonant fields indicate the formation of magnetic islands
  - Two-fluid calculations predict stochastic layer in the plasma edge as large as in the vacuum field approach



### Calculations show no difference between edge stochastization in SN and SF configurations

 As in a SN, vacuum, two-fluid and single-fluid calculations predict an increasing of the edge stochasticity with I<sub>c</sub> in a SF configuration



### Calculations show no difference between edge stochastization in SN and SF configurations

 As in a SN, vacuum, two-fluid and single-fluid calculations predict an increasing of the edge stochasticity with I<sub>c</sub> in a SF configuration



### Calculations show no difference between edge stochastization in SN and SF configurations

 As in a SN, vacuum, two-fluid and single-fluid calculations predict an increasing of the edge stochasticity with I<sub>C</sub> in a SF configuration



## Lower poloidal field in the null-point region of the SF configuration leads to the formation of longer lobes

- The SF configuration magnifies the effect of magnetic perturbations
  - More striations in the divertor may lead to lower peak heat fluxes









## Lower poloidal field in the null-point region of the SF configuration leads to the formation of longer lobes

- The SF configuration magnifies the effect of magnetic perturbations
  - More striations in the divertor may lead to lower peak heat fluxes



Magnetic field lines in the null-point region of the SF divertor remain close to the edge





# Impurities can be used as a tool to manipulate the contribution of two-fluid effects to the plasma response

- Two-fluid effects governed by ion inertial length, d<sub>i</sub>
  - lons may decouple from electrons within d<sub>i</sub>
- Ion inertial length depends on effective ion charge, Z<sub>eff</sub>

$$d_i \equiv \frac{c}{\omega_{pi}} = \frac{c}{Z_{eff}} \sqrt{\frac{M_i}{4 \pi n_0 e^2}}$$

Two-fluid effects are more significant in plasmas with low values of Z<sub>eff</sub>

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) &= 0\\ n\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) &= \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi\\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p &= -\Gamma p \nabla \cdot \mathbf{u} - \frac{d_i}{n} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n}{n} - \nabla p_e\right)\\ -(\Gamma - 1) \nabla \cdot \mathbf{q}\\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E}\\ \mathbf{E} &= -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{d_i}{n} (\mathbf{J} \times \mathbf{B} - \nabla p_e)\\ \Pi &= -\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right]\\ \mathbf{q} &= -\kappa \nabla \left(\frac{p}{n}\right) - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla \left(\frac{p_e}{n}\right)\\ \mathbf{J} &= \nabla \times \mathbf{B}\end{aligned}$$



#### M3D-C<sup>1</sup> calculations predict shorter lobes in plasmas with higher values of ion effective charge

- Impurities tend to reduce two-fluid effects in both SN and SF configurations
  - Plasma respond as a single-fluid in plasmas with high Z<sub>eff</sub>



Magnetic field lines in lobes of higher  $\rm Z_{eff}$  plasmas have longer  $\rm L_{C}$ 



G.P. Canal, ISTW, Princeton, November, 2015



### M3D-C<sup>1</sup> calculations predict shorter lobes in plasmas with higher values of ion effective charge

- Impurities tend to reduce two-fluid effects in both SN and SF configurations
  - Plasma respond as a single-fluid in plasmas with high Z<sub>eff</sub>



Magnetic field lines in lobes of higher Z<sub>eff</sub> plasmas goes deeper into the plasma





#### Plasma edge stochasticity increases in plasmas with higher values of Z<sub>eff</sub>

Impurities tend to increase edge stochasticity in both SN and SF configurations







#### M3D-C<sup>1</sup> calculations predict shorter lobes in plasmas with higher values of ion effective charge

- Impurities tend to reduce two-fluid effects in both SN and SF configurations
  - Plasma respond as a single-fluid in plasmas with high Z<sub>eff</sub>



#### M3D-C<sup>1</sup> calculations predict shorter lobes in plasmas with higher values of ion effective charge

- Impurities tend to reduce two-fluid effects in both SN and SF configurations
  - Plasma respond as a single-fluid in plasmas with high Z<sub>eff</sub>



Magnetic field lines in lobes of higher Z<sub>eff</sub> plasmas goes deeper into the plasma





#### Plasma edge stochasticity increases in plasmas with higher values of Z<sub>eff</sub>

- Impurities tend to increase edge stochasticity in both SN and SF configurations
  - Plasma respond as a single-fluid in plasmas with high Z<sub>eff</sub>







## The impact of impurities on the importance of two-fluid effects may be related to transport effects in high $v_e^*$ plasmas

- Heat flux splitting is visible only for  $v_e^* > 0.5$ 
  - Particle flux splitting occurs at lower values of  $v_e^*$



[M.W. Jakubowski, Nucl. Fusion (2009)]





30/35

### Effect of 3D magnetic perturbations on secondary manifolds is negligible

 Vacuum approach calculations show that C-coil currents have no significant effect on secondary manifolds

Magnetic field lines in the private flux region are too far from the C-coil



1.0 kA

### Secondary manifolds become apparent when perturbation coil is placed close to secondary x-point



### Primary and secondary manifolds are visible when both perturbation coils are used

 Calculations show that, for a sufficiently close perturbation coil, both primary and secondary manifolds can be manipulated



# Primary and secondary manifolds interact at sufficiently short distance between x-points

- Vacuum approach calculations show that primary and secondary manifolds may interact at
  - sufficiently close perturbation coils
  - sufficiently large perturbation coil currents
  - small distance between x-points
- Interaction between manifolds may
  - affect the edge plasma transport
  - improve the power repartition between plasma legs (reduction of peak heat flux)
  - increase divertor volume (radiated power fraction and easier access to detachment)



34/35



### Summary: Improved physics understanding & modeling of 3D fields in the SF divertor are needed to extrapolate towards larger devices

- M3D-C<sup>1</sup> calculations predict a strong stochastization of the plasma edge with increasing perturbation coil current in both SN and SF configurations
  - Plasma lobes in the SF are longer than in the SN configuration
- Impurities can be used as a tool to manipulate the contribution of two-fluid effects to the plasma response
  - Plasmas with higher Z<sub>eff</sub> have shorter lobes and more stochastic edge
- Interaction between primary and secondary manifolds may have a significant impact on
  - plasma edge transport
  - improve power repartition between plasma legs
  - increase divertor volume



