

Observation of divertor peak heat flux reduction with edge oscillation during the inter-ELM and ELM-free phase in NSTX

K.F. Gan¹, J-W. Ahn², T.K. Gray², R. Maingi³, S.J. Zweben³, E.D. Fredrickson³, V.A. Soukhanovskii⁴, B.D.Wirth¹

¹UTK, ²ORNL, ³PPPL, ⁴LLNL

18th International Spherical Torus Workshop Princeton University, USA Nov 3 – 6, 2015

Outlines

• Background and diagnostics

• Experiments observation for reduced peak heat flux during ELM-free phase

• Edge oscillation during inter-Type I ELM

• Summary and question

SOL H-modes power width research

Divertor heat flux during QH modes on DIII-D

Divertor heat flux, Da and GPI measurement in NSTX

Deceased peak heat flux during inter-ELM

- Divertor heat flux decreased gradually during ELM-free with little change on power deposition (from 2MW/m² to 0.6MW/m²).
- λ_{int} increase from 1cm to 3cm during ELM-free

2D heat flux distribution

Eich fit for λ_q during inter-ELM

At the initial of the ELM-free phase, the heat flux deposition is narrow, the calculated λ_a is consistent with the current prediction.

Divertor heat flux evolution during inter type-III ELMs

Observation of edge oscillation from GPI

NSTX-U

EHO induced the 2khz edge and divertor heat flux oscillation?

- The reduced peak heat flux accompanied by EHOs (edge harmonic oscillation)
- The frequency for filamentary divertor heat flux ~2khz is consistent with GPI results and n=1 spectra.
- The GPI movies for single EHOs events is similar as GPI movies during ELM

The time consistent between divertor filamentary structure and n spectra

Divertor Da results

The filamentary structure was not observed by Da camera for 132405.

Small ELM research on NSTX

The filamentary structure found by Da measurement

Wide divertor heat flux width during inter type I ELM

Eich fit for λ_q during inter-ELM

The λ_q =11.7mm is much larger than currents prediction

The GPI observation of edge oscillation for #132438

261.840ms+0.008 or 0.009ms

Time evolution of GPI data

n=2 has the same frequency with the edge oscillation

- The frequency of edge oscillation changed with time 7khz @0.2s, 4khz @0.265s.
- The frequency of edge oscillation is consistent with n=2 frequency.
- Too fast events for IR and Da camera measurements.

GPI observation during type I ELM

262.591ms+0.008 or 0.009ms

The behavior from GPI movie is similar between edge oscillation and type I ELM

Similar observation on JET

Summary and question

- The edge oscillation during ELM-free can significantly increase the divertor heat flux width and decrease the peak heat flux .
- The λq during inter-ELM become wider by current experiments prediction with edge oscillation.
- How to explain the radial propagation of divertor heat flux?

• What is mechanism for the different divertor profile behavior among different toroidal location?