

Analysis and prediction of momentum pinch in spherical tokamaks

W. Guttenfelder¹, A.R. Field², I. Lupelli², J.-K. Park¹, T. Tala³, S.M. Kaye¹, M. Peters⁴, Y. Ren¹, W.M. Solomon¹ ¹PPPL, ²CCFE, ³VTT-Finland, ⁴Indiana University

18th International Spherical Torus Workshop,

Princeton University, Nov. 3-6

Overview

- Previous perturbative measurements performed for NSTX H-modes identified an inward momentum pinch, RV_{ϕ}/χ_{ϕ} =(-1)-(-7) [Solomon, PRL 2008; Kaye, NF 2009]
- However, quasi-linear gyrokinetic simulations predict very weak or outward momentum convection, $RV_{\phi}/\chi_{\phi}=0-2$, due to kinetic ballooning modes (KBM) at high beta [Guttenfelder, TTF 2013, APS 2013]
- Performed perturbative momentum transport experiments in MAST L-mode plasma (2013) to validate with theory at low beta (avoids complication of electromagnetic effects)
- Experimental results (this poster) find similar momentum pinch $RV_{\phi}/\chi_{\phi}=(-2)-(-11)$; gyrokinetic analysis now beginning

Background & Motivation

Interpretation of toroidal angular momentum transport often assumes diffusive and convective components

- Transport equation: $\frac{\partial}{\partial t} (n_i m_i \langle R^2 \rangle \Omega) + \nabla \cdot \Pi_{\varphi} = S_{\Omega} \rightarrow \sum_s (\cdots)$
- Assumed transport form: $\Pi_{\phi} = -nmR\chi_{\phi}(R\nabla\Omega) + nmV_{\phi}(R\Omega)$

• Pinch expected due to Coriolis drift [Peeters, 2007], turbulent equipartition + thermoelectric force [Hahm, 2007]

Perturbative NSTX H-mode experiments (using n=3 magnetic braking) indicate existence of an inward momentum pinch

Possible dependence on density

(Tala et al., IAEA 2012)

gradient (R/L_n) , less clear with

collisionality (v^*)

• $RV_{\phi}/\chi_{\phi} \approx$ -(1-7) for many NSTX discharges & radii

(Solomon et al., PRL 2008, PoP 2010; Yoshida et al., NF 2012)

- JET DIII-D (c) NSTX AUG NSTX RV_{ϕ} ⁻r/a~0.6 r/a~0.7 Pinch number = $-R_0 v_{pinch} / \chi_{\phi}$ χ_{o} RV_{PINCH} (m²/s) -r/a~0.8 -20 -40 8 0L 0I .0 0.1 0.2 0.3 0.4 5 $\chi_{\phi}(m^2/s)$ R/L_n ٧*
- Local, linear gyrokinetic simulations of ITG turbulence describe pinch and scaling in conventional tokamaks → does this hold for STs?

Local, linear sims unable to explain measured pinch

- Guttenfelder (TTF, 2013) showed gyrokinetic simulations (GYRO) predicting linear stability, Pr and pinch (following Peeters, 2007)
- In H-modes, mix of microtearing (MT) and KBM predicted unstable
- No momentum transport for MT but KBM predicts:
 - Small Pr~0.3-0.5
 - Small or outward convection, RV_{ϕ}/χ_{ϕ} ~0-2
 - Pinch insensitive to parameter variations (R/L_n, v_{*}, ...)
- In L-mode, ITG/TEM unstable:
 - Larger Pr≤1
 - Small inward pinch, $RV_{\phi}/\chi_{\phi} \sim -2-0$
 - Pinch insensitive to parameter variations (R/L_n, v_{*}, ...)

NSTX-U

MAST experiments

MAST experiment M9-TC11 ran in August 2013

- Acquired shots in both L-mode and H-mode, at two plasma currents (400, 600 kA)
- Used short n=4 (H-mode) and n=3 (L-mode) RMP fields to perturb rotation
 - Also obtained some BES & DBS turbulence measurements
- Analysis of H-mode rotation complicated by saturated n=1 internal-kink mode, occurs as q approaches unity, q→1⁺ [I. Chapman, NF (2010)]
 - May be able to interpret momentum transport if accounting for NTV torque due to saturated n=1 kink [M.D. Hua, PPCF (2010)]
- 600 kA L-mode flat-top too short before transition to H-mode
- 400 kA L-mode shots worked best (longer duration) Analysis of NTV torque and momentum transport to follow
- Also obtained one repeat shot in 400 kA L-mode with NBI modulation (Sept 11, 2013) – influence of power/torque modulation on rotation unclear, more analysis in the future

Obtained repeatable 400 kA L-modes

- LSN L-mode, 2 MW
 - $< n_e > = 2.3 \times 10^{19} \text{ m}^{-3}$
 - B_T=0.5 T
 - q₉₅≈5
- Three n=3 field pulses applied
 29890 N×I_{RMP} = 4×1.4 kA
 29891 no RMP
 29892 N×I_{RMP} = 4×1.4 kA
 (repeat, second BES location)

- Weak density pump out in L-mode w/ RMP, drop in β_{N}
- Without RMP, eventual transition into H-mode (t~0.47 s)

To obtain sufficient rotation braking required strong bias to lower single null

- n=3 field applied using only lower 12 coils (blue)
- Some variation in assumed 2D (axisymmetric) shape during/after applied n=3 field (from MSE-constrained EFIT++)
- However, variation largely due to plasma evolution regardless of n=3 field
 - Axisymmetric equilibrium similar to control shot (29891) without n=3 fields

Changes in toroidal flow due to n=3 RMP observed

- Unfortunately have not reached steady conditions before & after perturbation
- Control shot w/o n=3 RMP (29891) provides a baseline for analysis
- Response of rotation to applied n=3 field appears delayed (depending on location)

WNSTX-U

Effect of sawteeth visible in central rotation

- Sawteeth occur with period $(\Delta t)_{ST} \approx 6-22 \text{ ms}$ (average ~12 ms)
- CXRS measurement sampling of $\Delta t=5$ ms
- Can ensemble difference just before/after to estimate average $\Delta\Omega_{ST}$, $\Delta T_{e,ST}$, ...

Sawteeth cause ~6 krad/s (~8%) deceleration inside inversion radius

- q=1 surface ψ_N ~0.19-0.26 (R_{out}~114-118 cm) consistent with ΔT_e inversion
- $\Delta T_{e} \sim 120 \text{ eV} (\sim 16\% \text{ of } T_{e,0} \sim 750)$
- ΔT_i ~ 50 eV (~6% of T_{i,0}~800)

Using filtered data (and TRANSP analysis) to infer NTV torque and perturbative momentum transport

- Smoothed with zero-phase FIR filter (Δt_{filt} =15 ms) to remove sawtooth oscillations
- Local ST perturbations $\Delta\Omega_{ST}$ ~2-6 krad/s smaller than $\Delta\Omega_{NTV}$ ~10-20 krad/s

WNSTX-U

Guttenfelder - Momentum Pinch (18th ISTW, Nov. 2015)

Confinement and NTV torque analysis

First determine 0D confinement time and NTV torque

• Integrating over volume leads to 0D angular momentum

- Can fit to recovery after RMP (T_{NTV}=0) to infer τ_{ϕ}
- Can then use τ_{o} during RMP to infer T_{NTV}
- Alternatively, can fit entire response (during and after RMP) to simultaneously solve for τ_{ϕ} and T_{NTV} (assuming $T_{NTV} \sim I_{RMP}^2$)

Momentum confinement time comparable to energy confinement time

- Inferred $\tau_{o} \approx 28$ ms comparable to energy confinement time $\tau_{E} \approx 30$ ms
 - − For reference, $\tau_{E,th} \approx 19$, $\tau_{E,e} \approx 13$ ms
- T_{NTV}≈0.21-0.28 N-m (T_{NBI}≈0.7 N-m), depending on fit approach
- Unfortunately we do not have long steady periods before and after
 - Clearly missing some additional background evolution
 - Also not accounting for apparent delayed onset of rotation braking

	τ _φ (ms)	T _{NTV} (N-m)
separate fit	28	0.21
integrated fit	27	0.28

NTV torque peaked near axis, in contrast to typical H-mode results

 T_{NTV} determined from TRANSP dL(ρ)/dt, averaged over 0.36-0.39 s

- Total NTV torque ~ 0.15 N-m
 - 0.19 N-m if subtract dL/dt during same period from control shot w/o RMP
 - Compared to 0.20-0.28 N-m from 0D analysis

IPEC-PENT modeling predicts similar range of core-dominant NTV torque, but profiles are different due to q=1 subtlety

- Lower coil n=3 configuration generates both resonant and non-resonant components of the field
- Total NTV by trapped and passing ions = 0.13~0.36N-m for q_{min}=0.95~1.05
 - NTV torque is strong at the core by l=1,2 bounce resonances, and also by low enough collisionality due to peaked temperature profile
- But wrong in details: Non-linear saturation of the field inside q<1, potato orbits at the center, and finite-orbit averaging near the peaks can be all important

MAST lower n=3 (IPEC)

NTV torque density profiles by IPEC-PENT: Total NTV = 0.36N-m (q_{min} =0.95)

Momentum pinch analysis

Method to infer χ_{ϕ} and V_{ϕ} from transient rotation response <u>after</u> RMP turn-off

 TRANSP solves for momentum flux, Π, using the flux-surface-averaged toroidal angular momentum transport equation (Goldston, Varenna 1985), plus NUBEAM calculations for torque sources & sinks:

$$\frac{\partial}{\partial t} \left(\sum_{i} n_{i} m_{i} \langle R^{2} \rangle \Omega \right) + \frac{1}{V'} \frac{\partial}{\partial \rho} \left[V' \cdot \Pi \right] = \sum T_{\text{source}} - \sum T_{\text{sink}}$$

• <u>Assuming</u> momentum flux composed of only diffusive and convective contributions:

$$\Pi = \sum_{i} n_{i} m_{i} \left[- \left\langle R^{2} \left(\nabla \rho \right)^{2} \right\rangle \chi_{\phi} \frac{\partial \Omega}{\partial \rho} + \left\langle R^{2} \right\rangle \left\langle \nabla \rho \right\rangle V_{\phi} \Omega \right]$$

we can use $\Pi(\rho,t)$, $d\Omega/d\rho(\rho,t)$, and $\Omega(\rho,t)$ in a nonlinear least squares fit algorithm to determine best fit $\chi_{\phi}(\rho)$, $V_{\phi}(\rho)$ (assumed constant in time)

• Note: method only valid if $d\Omega/d\rho(t)$ and $\Omega(t)$ are sufficiently decorrelated

Transient recovery implies an inward momentum pinch

- Using both χ_{ϕ} and V_{ϕ} improves the quality of fit $(\chi_{\nu}^2 \text{ smaller than } \chi_{\phi}\text{-only fit})$
- At locations where there is a strong Ω - $\nabla\Omega$ linear correlation (Pearson product R \rightarrow 1), method is ill-posed $\Rightarrow \chi_{\phi} \& V_{\phi}$ tend to large values
 - Symbols are analyzed points for arbitrary R<0.9 cutoff
- <u>Assuming</u> smoothly varying transport coefficients forces smoother χ_{ϕ} , V_{ϕ} profiles
 - Best fit (lowest χ_v^2) using quadratic polynomial

🖤 NSTX-U

Predicted $\Omega(t)$ response improved when including convection $(\chi_{\phi} \& V_{\phi})$ as opposed to diffusion only (χ_{ϕ})

 Details of time response not accurately reproduced

Resulting Prandtl number Pr~0.5-2.0, Pinch parameter RV_{ϕ}/χ_{ϕ} ~ (-2) to (-11)

Subtracting neoclassical ion thermal transport leads to larger Pr~0.8-4.0

- In L-mode, $\chi_{i,NC}$ smaller than χ_i but still substantial contribution
- $\chi_e \sim 3 \cdot \chi_i$, additional uncertainty from $T_e \sim T_i$ collisional energy exchange

 Local, quasi-linear Coriolis pinch theory [Peeters, PRL 2007] gives: RV_φ/χ_φ = - 4 - R/L_n ~ (-9), in range of measurement but flat in radius

Gyrokinetic analysis proceeding on this shot

• Will start with local linear & nonlinear GYRO runs for momentum pinch

- Additional effects beyond momentum pinch may be present in ST plasmas and will be investigated, e.g.:
 - Residual stress (Π_{RS}) from profile shearing at large ρ_s/L [e.g., Camenen, NF (2011)]
 - Centrifugal effects $\sim \nabla(u^2/2)=u \cdot u'$ [R. Buchholz et al., Phys. Plasmas (2015)]

$$\hat{\Pi} = \hat{\chi}_{\phi} \left[u' + \left(\frac{RV_{\phi}}{\chi_{\phi}} \right) u + \left(\frac{C_{cf}}{\chi_{\phi}} \frac{c_{s}}{R} \right) u \cdot u' \right] + \hat{\Pi}_{RS}$$

Summary

- n=3 fields applied to perturbatively brake plasma rotation in low-beta MAST L-mode
 - Analysis implies NTV torque profile peaked in core
 - <u>Assuming</u> diffusion & convection is all that matters (χ_{ϕ}, V_{ϕ}) , response after removal of NTV torque indicates inward momentum pinch, $RV_{\phi}/\chi_{\phi} \sim (-2) (-11)$
- Limitations in interpretation due to unsteady conditions, correlation between Ω - $\nabla\Omega$
 - Will try to improve analysis by fitting to modeled $\Omega(t)$ from integrating momentum transport equation
- Gyrokinetic predictions proceeding to predict RV_{ϕ}/χ_{ϕ} and other possible effects that may be important (centrifugal, finite ρ_*)
- Similar NSTX-U L-mode experiment planned for upcoming run campaign

