Imperial College London

found to be inversely related to energy multiplication.

power density under the new constraint of fixed divertor loading.

- radius $R_0 \leq 0.5 \mathrm{m}$
- conditions
- sibility to research community

Fixed pressure (fraction of beta limit):

$$P_f \sim \frac{1}{Q^{2/3}}$$
 but $P_{NBI} \sim \frac{1}{Q^{5/3}}$

put
$$P_{NBI} \sim \overline{Q^{5/3}}$$

- with Q
- confinement
- However this requires an increase in

Divertor power limit taken as $P_{div}/R_0 = 20 \text{MW/m}$.

Maximising fusion power density in compact beam driven tokamaks

Steven McNamara^{1,2}, Mikhail Gryaznevich^{1,2} & Steven Rose¹

¹Imperial College London, ²Tokamak Energy Ltd.

¹sam611@ic.ac.uk

Seeding with a small amount of tritium

H _{ITER}	$P_f(\mathrm{MW})$	$n(14.1) \times 10^{17}/s$	$m_{\rm T}(\mu g)$
1	0.27	0.80	48.6
1.5	0.32	1.12	70.3
2	0.45	1.60	94.3
2.5	0.66	2.33	124.6

• 14.1MeV neutron outputs suitable for a number of applications including: materials and

Conclusions

• In power limited devices fusion power density is positively correlated to energy mul-

• A super compact MW range neutron source is feasibly with ITER like divertor loadings, assuming transport scalings do not change significantly as device size is re-

• Divertor loadings are dominated by external power. Therefore maximising current

• Tritium seeding can greatly increase performance without the need for high tritium

Further work

• Complete scoping study by fully investigating DD and DT devices, including the effects

• Use results as basis for a more detailed design study of a super compact neutron source