

Kinetic study of plasma current start-up under EBW power in tokamak plasmas

Erasmus du Toit^{1,2}, Martin O'Brien² and Roddy Vann¹

¹York Plasma Institute, Department of Physics, University of York, York, YO10 5DD, UK ²Culham Centre for Fusion Energy, Abingdon, OX14 3DB, UK

19th International Spherical Torus Workshop 18-22 September 2017

EBW-assisted start-up successfully demonstrated on MAST

- Compact size of STs
 - Limited space for shielded inboard solenoid
 - Need for non-inductive start-up techniques
- Electron Bernstein wave (EBW) start-up demonstrated on MAST
 - Double mode conversion
 - Excitation and absorption of EBWs

The generation of a plasma current leads to the formation of CFS

- Plasma current generated under EBW power in MAST
- Crucial for closed flux surfaces (CFS) and improving confinement
- How is the current generated?

We study the time evolution of the (OD2V) distribution function

We develop a model that studies the time evolution of the electron distribution function:

 $\frac{\partial f}{\partial t} = \text{source} + \text{loss} + \text{RF Heating} + \text{loop voltage} + \text{collisions}$

- To ensure the model is tractable it is OD in space $f = f(p_{\parallel}, p_{\perp}, t)$
- Assume the important physics can be captured in a number of terms
- Appropriate volume averages and approximations account for spatial dependences

RF heating increases the energy of resonant electrons

$$\left(\frac{\partial f}{\partial t}\right)_{\text{RF Heating}} = D_0 \frac{1}{p_\perp} \frac{\partial}{\partial p_\perp} p_\perp \left(\exp\left[-\left(\frac{\omega - k_\parallel v_\parallel - n\omega_c}{\Delta \omega}\right)^2 \right] \right)_{\text{volume}} \frac{\partial f}{\partial p_\perp}$$

- RF heating increases the perpendicular energy of electrons
- A volume average is taken over the region of absorption to obtain a spatially independent term
- The value of D₀ is iterated over to ensure the correct power is absorbed

Example of the diffusion operator

Open magnetic field lines lead to losses of most electrons

- Electrons can freely stream along the open magnetic field lines out of the plasma
- Electrons are subjected to a ∇B and curvature drift,

$$V_Z = \frac{B_Z}{B} v_{\parallel} - \frac{m_e}{eBR} \left(v_{\parallel}^2 + \frac{v_{\perp}^2}{2} \right)$$

- Electrons with $V_Z = 0$ will be confined
- Leads to a loss term,

$$\left(\frac{\partial f}{\partial t}\right)_{\rm loss} = -\frac{f}{\tau_{\rm loss}} P_{\rm loss}(p_{\parallel}, p_{\perp})$$

 τ (μ s) 20n

Increase in plasma current leads to improved confinement

Confinement of energetic electrons (up to 100 keV) for increasing plasma current Passing orbits (red) and trapped orbits (black)

Collisions generate a current carried by energetic electrons under EBW heating

- Fisch-Boozer mechanism: Preferential heating of electrons creates anisotropic plasma resistivity which generates a current
- Large population of energetic electrons are created by the EBW

 p_{\perp} Initial **EBW** Maxwellian heating p_{\parallel} Energetic Asymmetry in electrons thermal electrons p_{\parallel} Current p_{\perp} carried by **Collisions restore** energetic thermal Maxwellian electrons p_{\parallel}

Preferential confinement of electrons generates a larger current

 Pitch-angle scattering increase temperature ⇒ greater losses ⇒ preferential confinement creates asymmetry and increase in current

Simulated plasma current for three different cases

Vertical shift of the plasma increases the plasma current for two reasons

- Experiments: A vertical shift of the plasma helps the formation of CFS – increases I_P
- Two reasons:
- **1.** A vertical shift enhances the asymmetry of electron confinement \Rightarrow increase in I_P
- 2. Creates favourable N_{\parallel} in absorption area
 - In MAST, $B_V < 0$
 - $N_{\parallel} < 0$ above and $N_{\parallel} > 0$ below midplane
 - Vertical shift ensure $N_{\parallel} > 0$

Simulated plasma current with and without a vertical shift

Increasing the vacuum poloidal field B_V leads to larger plasma current

- Experiments: larger currents can be generated by increasing B_V
- Increasing B_V allows for larger
 I_P while keeping the preferential
 confinement intact

Simulated plasma current for a constant and linearly increasing B_V

0.6 0.6 0.5 0.5 0.4 0/1/C v_L 0.3 0.3 0.2 0.2 0.1 0.1 -0.5 0.5 -0.5 0.5 $I_P / I_{CFS} = 1/2$ $I_P/I_{CFS} = 1$

$$B_V = 20 \, {\rm mT}$$

19710

 $B_V = 10 \text{ mT}$

Erasmus du Toit - ISTW2017 - 18-22 September

Experiments use combination of vertical kick and B_V ramp-up

- Experiments use a combination of vertical shift (to ensure optimal N_{||}) and B_V ramp-up to achieve higher I_P
- Simulations compare favourably to experiments

Comparison between simulation and experiment for shot 28941 for a 50 kW input

The generated current is independent of input power during B_V ramp-up

- Experiments showed a linear relationship between *I_P* and *P*₀
- This is only true after CFS have formed, and the collisions dominate the CD! (Fisch-Boozer mechanism)
- The time evolution of I_{CFS} determines the current generation, provided the power is high enough

The relationship between density and power is needed for further study

- Experiments suggests that density decreases for increasing power
- Similar as before, the time evolution of I_{CFS} determines the current generation, provided the density is high enough
- The relationship between power and density is needed for further study, but this is beyond the scope of this work

Increase $P_0 \Rightarrow$ Increase I_P (constant n_e)

Increase $n_e \Rightarrow$ Increase I_P (constant P_0)

Increase $P_0 \Rightarrow$ Decrease $n_e \Rightarrow I_P$?

Conclusion

- The preferential confinement of electrons, due to the open magnetic field line configuration, is responsible for the majority of the generated current until CFS forms
- Collisions only act to "feed" the loss term by increasing the parallel momentum of electrons and therefore the rate at which they are lost
- Two effects are used to generate larger currents:
 - A vertical shift ensures a favourable N_{\parallel}
 - A vacuum field ramp-up allows for an increase in the plasma current while maintaining the asymmetry in the loss term
- Simulations compare well to experiments, but for further predictions, the relationship between density and power is needed