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This Talk Focuses on FESS-FNSF 
(DOE funded project; under development) 
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Outline 

•  FESS-FNSF radiation environment. 

•  Novel testing strategy to develop and qualify DCLL blankets 
and materials for DEMO and power plants. 

•  FNSF breeding potential. 
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Radiation Environment 
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FNSF Operating Schedule* 

* C.E. Kessel et al., The Fusion Nuclear Science Facility (FNSF), the Critical Step in the Pathway to Fusion Energy, presented at 21st TOFE-2014.  
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FNSF Assumptions 

•  Tokamak concept.  

•  8 ports: 4 TBMs, 1 MTM, and 3 H/CD ports on OB side. 

•  10 dpa/FPY per MW/m2. 

•  10-20 dpa present limit for RAFM FS. 

•  Possibility of pre-FNSF irradiation in SNS (@ 5.5 dpa/FPY) could yield: 

•  66 dpa in 12 y for RAFM FS 

•  33 dpa in 6 y for ODS-FS 

•  33 dpa in 6 y for Nano-Structured Ferritic Alloys (NFA). 
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Radiation Damage and Lifetime of RAFM Structure 
(OB midplane) 
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•  Structural material replacement may coincide with end of Phase.   

•  Testing modules (TBM and MTM) could remain in place to achieve high fluence (66 dpa 
for RAFM FS, 33 dpa for ODS-FS, and 33 dpa for NFA). 

•  Cumulative dpa could reach 90-125 dpa max @ OB midplane. 

•  What other failure mechanism could limit RAFM structure lifetime? 

•  How long should TBM/MTM operate to provide meaningful testing?  EOL fluence? 

SNS 
Irradiation 



9 

End-of-Life Fluence for Testing 
(OB midplane) 

•  Should TBM EOL fluence coincide with end of phase (0.7 – 3.7 MWy/m2 for 6 – 37 dpa)? 

•  EOL fluence could reach 9 – 12 MWy/m2 for 90 -125 dpa @ OB midplane. 

•  What is the ultimate fluence goal for meaningful testing? 

•  1 MWy/m2 (for reliable operation; ~0.7 FPY)? 

•  6 MWy/m2 (for operating over long time of exposure; ~4 FPY)? 
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Blanket Testing Strategy 
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Blanket Testing, Development, and Qualification 

•  Goal: Qualify preferred US blanket concept (DCLL) for DEMO (and power plants) through testing, developing, and 
enhancing performance during each phase of FNSF operation. 

•  Novel Strategy that reaches beyond traditional testing mission of ITER: Four generations of DCLL blanket 
concept tested first in test blanket modules (TBM with limited dimensions), and then converted (assuming +ve 

results) into full sector for qualification before use in DEMO (and power plants). 

•  Requirements: 

–  TBMs located at outboard (OB) midplane (where neutron flux peaks) 

–  Surrounding DCLL blanket utilized for tritium breeding, qualification, and reliability growth testing. 

•  Staged blanket testing: During operation, TBM serves as “forerunner” and develops more advanced blanket 
technologies for GEN-II, III, and IV DCLL blanket systems.  

•  Combined results from TBMs and blanket systems are essential to build high confidence and lower 
risk for successful operation of advanced blankets in DEMO (and power plants).  

TBM 

  Blanket     
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GEN-I DCLL Blanket Installed at Beginning 
of FNSF Operation 

12 

•  To breed tritium, low-temperature, robust, and highly 
reliable blanket installed at beginning of FNSF operation 
and covers entire space surrounding 4 TBMs, 1 MTM, and 
3 H/CD ports.  

•  To assure high reliability, sufficient margins to absolute 
limits (maximum structure temperatures, inter-phase 
temperatures to coolant, and mechanical stresses) should 
all be considered in designing GEN-I blanket coupled with 
extensive pre-FNSF R&D blanket program*.  

GEN-I  
Low-Temp 

DCLL Blanket 

TBM, 
MTM 

or H/CD  
ports 

* S. Smolentsev et al., R&D Needs and Progress Measurement for Liquid Metal Blankets and Systems on the Pathway from Present 
Experimental Facilities to FNSF, presented at 21st TOFE-2014. 
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Proposed Low-Temperature GEN-I DCLL Blanket 

•  Operates with moderate coolant temperature (e.g., FS 
temperature of 400-500oC and LiPb and He inlet/
outlet temperature of 350/450oC).  

•  Requires FCI to serve as electric insulator to control 
MHD pressure drop. (Since operating temperature is 
not too high, FCI does not serve as thermal insulator). 

•  Temperature in FW and blanket structure as uniform 
as possible to minimize thermal stresses. 

•  Since SiC FCI may not be developed and qualified 
before operating FNSF, sandwich-like FCI made of 
FS/alumina/FS multilayer could be employed for 
GEN-I blanket.  

Cooling 
Channels 

Typical DCLL Blanket Layout 

SiC FCI  

FS/Al2O3/FS  
FCI 
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DCLL Blanket Development, Testing, and 
Qualification 
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•  Five generations of blankets will be developed for FNSF: 
–  GEN-I low-temperature DCLL blanket: with FS/Alumina/FS FCI, RAFM structure (F82H of EUROFER) operating at 350-550oC, 

maximum LiPb and He exit temperature of 450ºC, and maximum interface steel/LiPb temperature of 450oC. 
–  GEN-II DCLL blanket first tested successfully in TBM and later installed in all sectors to qualify it if necessary for DEMO and/or 

power plants: DCLL blanket with SiC FCI, RAFM structure operating at 350-550oC, LiPb exit temperature of  700ºC, He exit 
temperature of 500ºC, and maximum interface steel/LiPb temperature of 500oC (for corrosion considerations) .  

–  GEN-III DCLL blanket first tested successfully in TBM and later installed in all sectors to qualify it if necessary for DEMO and/or 
power plants: DCLL blanket with SiC FCI, ODS-FS structure operating at 600oC, LiPb exit temperature of  750ºC, He exit temperature 
of 500ºC, and maximum interface steel/LiPb temperature > 500oC.  

–  GEN-IV DCLL blanket first tested successfully in TBM and later installed in all sectors to qualify it if necessary for DEMO and/or 
power plants: DCLL blanket with SiC FCI, NFA structure operating at 700oC, LiPb exit temperature of 800ºC, He exit temperature of 
500ºC, and maximum interface steel/LiPb temperature > 500oC.  

–  GEN-V SiC/LiPb blanket tested in TBM for more advanced DEMO or power plants: advanced SiC/LiPb blanket with SiC/SiC 
composites operating at 1000oC and LiPb exit temperature of 1100ºC.  

•  For GEN III and IV blankets, it is assumed that ODS-FS and NFA (that operate at higher temperatures than 550oC) are employed everywhere in 
FW and blanket to enhance radiation lifetime and thermal conversion efficiency. LiPb/FS corrosion solutions should be found by 2030.  
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Materials Testing Strategy 
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MTM Will Develop More Advanced Materials  
for Fusion 

•  Goal: Develop comprehensive multi-materials database for up to 90 dpa  

 with possibility of extending tests to 125 dpa in Phase #7.  

•  Whole list of new materials could be tested in MTM: 
–  New GEN of FS (as first generation of ferritic steels (F82H and EUROFER) are not 

performing well at high and low temperatures): 
•  Extend max operating temp into 550-1000oC regime (for FW, blanket, SR, and divertor) 

•  Develop FS variant less susceptible to DBTT in low-temp regime (for VV and LT shield) 

•  Develop reusable NFA if temp exceeds 1000oC during severe accidents. 

–  SiC/SiC composites for FW/blanket 

–  W alloys (W-TiC, WL10, W-K, W/W composites, VMW, etc.) for divertors 

–  LTS and HTS magnet materials: superconductors, jackets, insulators, etc.. 

•  Pre-FNSF characterization and theoretical predictive modeling using advanced 
computing methods will define MTM testing environment. 
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MTM Provides Critically Important Resource for Evaluation and 
Validation of Materials Performance in 14 MeV Neutron Environment 

•  Other data developed with continuous radiation sources (SNS, IFMIF or early 
Neutron Source): 
–  Is essential for developing science-based understanding of 14 MeV neutron 

radiation damage phenomena that underpins development of damage-resistant 
materials.  

–  Forms basis for developing engineering database for designing and licensing FNSF. 

•  MTM is complementary resource with advantages of: 
1.  Carrying  higher multiplicity of larger specimens compared to 10-500 ml range 

available in the SNS/IFMIF  
2.  Providing radiation effects data in pulsed neutron environment  
3.  Providing surveillance program to track performance of several materials 

irradiated in same 14 MeV neutron environment using range of specimen 
geometries  

4.  Provide a means of irradiation testing of new materials variants arising from:  
•  Continuing development of improved compositions/microstructures  
•  Application of advances in fabrication technologies (additive manufacturing, precision 

casting, joining technologies, etc). 
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MTM Offers Testing in Real Fusion Environment  
(unavailable in IFMIF, HFIR and SNS) 
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Replaceable FS structural frame 
upon reaching dpa limit while 
tested materials could be re-
installed after each change out.  

Layout of material samples within MTM 
(with varying shapes, sizes, thicknesses, etc.) 
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Preliminary Layout of FNSF  
with 8 Ports 
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Layout Guidelines 

•  16 sectors: 
–  8 sectors containing 8 ports 

–  8 sectors w/o ports.  

•  High degree of neutron flux 
symmetry at TBM surface is 
desirable in order to compare 
blanket concept performance 
under same operating conditions 

•  TBM ports at OB midplane 
should be arranged to exchange 
TBMs and MTM rapidly. All 
coolant pipes should be 
accessible from outside VV. 
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FNSF Breeding Potential 
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Tritium Breeding Ratio (TBR) 

•  TBR is a metric for T self-sufficiency   ⇒  Calculated TBR > 1. 

•  FNSF must breed their own T needed for plasma operation as external sources 
of T are insufficient, impractical, and/or inaccessible. (Available T resources from 
CANDU reactors will all be used by ITER). 

•  Annual T consumption for 500 MW fusion power is high (28 kg per full power 
year (FPY)). 

•  T is extremely expensive ($30-118k per gram).  	





23 

Small Deficiency in TBR Represents Significant 
Contribution to FNSF Operational Cost  

•  1% less TBR in FNSF means T shortage of ~300 g/FPY, costing $8-33M to 
purchase annually from unknown external sources.	



•  TBR must meet breeding requirement and should be calculated with high accuracy.  
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Example: TBR of ST-FNSF 
(1.7 m Device) 

3-D Neutronics Model 
(R= 1.7 m) 

24 

TBR ~ 0.97 

TBM 

MTM 

NBI 

Design measures to enhance TBR: 
•  Less cooling channels within blanket 
•  Replace PF coil shield by blanket (~3%) 
•  Smaller opening to divertor to reduce 

neutron leakage 
•  Thicker IB VV with internal breeding. 

1.7 m device has potential to achieve TBR > 1 
– major advantage over smaller devices 

Midplane Cross Section with  
4 TBMs, 1 MTM, and 4 NBIs 
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Example: TBR of ST-FNSF 
(1.0 m Device) 

TBR ~ 0.88 

•  1 m device cannot achieve TBR > 1 
even with design changes 

•  Solution: purchase ~3kg of T/FPY   
from outside sources at $30-100k/g of T, 
costing $12-55M/FPY. 
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Final Remarks 

•  T self-sufficiency and materials testing should be essential part of FNSF mission. 
•  TBMs and MTM serve as preliminary breadboard prototypes to test future 

generations of blankets and materials in real fusion environment (He/dpa = 10). 
•  Initial blanket surrounding TBMs and MTM must be robust and highly reliable, 

provide adequate tritium breeding, have adequate design margin and lifetime, and 
able to withstand high heat flux and disruptions during off-normal events.  

•  More advanced generations of incrementally improved blanket concepts can 
first be tested in TBMs, and then converted into full sectors to validate/qualify 
blanket for DEMO and power plants. 

•  Strong pre-FNSF R&D program combined with state-of-the-art predictive 
capability (extensive modeling and computer simulation) assure success of TBM 
testing and FNSF operation. 

•  Do not limit scope of testing. Develop flexible TBM and MTM capable of testing 
and validating more attractive blankets/materials than presently known. 
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Single Phase Testing in FNSF 
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Extending TBM Testing to Maximize Fluence 
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R&D Needs 

* S. Smolentsev et al., R&D Needs and Progress Measurement for Liquid Metal Blankets and Systems on the Pathway from Present 
Experimental Facilities to FNSF, presented at 21st TOFE-2014. 

•  Well planned R&D program for non-nuclear blanket testing* before 
FNSF operation. 

•  State-of-the-art predictive capability to avoid failure and assure success 
of testing in FNSF. 

•  Limited nuclear testing (small mock-ups of blanket could be tested with 14 
MeV neutrons in IFMIF, GDT, etc.). 

•  Specific tests may continue during FNSF operation. 
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MTM Attributes 

•  Most important attribute would be the much larger specimen volumes 
compared to 10-500 ml range available in the SNS/IFMIF series of neutron 
sources. 

•  Provide a means of testing larger size mechanical property specimens: 
–  Pressurized creep tubes and fracture toughness specimens with range of section 

thicknesses and crack geometries 
–  Validation of data derived from highly miniaturized specimens irradiated in 

SNS/IFMIF. 
•  Provide a means of conducting critically important surveillance program 

using range of specimen geometries to track radiation-induced changes in 
mechanical properties and dimensional stability of FW/blanket materials, 
divertor materials, structural materials, etc. 

•  Provide a means of irradiation testing of new materials variants arising 
from:  
–  Continuing development of improved compositions/microstructures  
–  Application of advances in fabrication technologies (additive manufacturing, 

precision casting, joining technologies, etc). 


