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The pedestal sets boundary conditions for the core and 
ejects structures that damage plasma-facing components 

•  Projections for ITER depend on accurate pedestal models 
–  ST parameter regime (large ρ*, high β, shaping, beam-driven flow) 

is a challenging environment for pedestal simulations 

•  Pedestal turbulence measurements in NSTX H-mode plasmas 
during ELM-free, MHD quiescent periods 

–  Identify parametric dependencies between turbulence quantities and 
transport-relevant plasma parameters 

–  Compare to turbulence models ➞ scalings point to TEM turbulence 
–  Compare to pedestal turbulence simulations 
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Turbulence measurements 
in steep gradient region 



Beam emission spectroscopy (BES) measures 
Doppler-shifted Dα emission from neutral beam particles 
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The beam emission spectroscopy (BES) system on NSTX 
measures fluctuations on the ion gyroscale with k⊥ρi ≤ 1.5  
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• Radial and poloidal arrays 
spanning core to SOL 

•  32 detection channels 
•  2-3 cm spot size and k┴ρi ≤ 1.5 
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Pedestal turbulence measurements 
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•  ELM-free, MHD quiescent H-mode with Li conditioning 
•  ΨN ≈ 0.8 – 0.95 in steep gradient region 



BES can measure poloidal correlation lengths (Lc), poloidal 
wavenumbers (kθ), decorrelation times (τd), and amplitude (ñ/n) 
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•  Auto-power spectra show 
plasma turbulence signals 
above detector noise levels 

•  Filtered data (8-50 kHz) show 
eddies moving down BES array 

Time-lag cross-correlation gives: 
•  Correlation length   C(x,τ=0) 
•  Decorrelation time   Cmax(τ) 
•  Eddy velocity   ∆z/∆τlag 

•  Dominant wavenumber 
–  Inferred from auto-correlation 

and eddy velocity 



At the LH transition, Lpol increases and kθ decreases 

Also, measurements suggest eddy advection in lab frame 
shifts from electron to ion diamagnetic direction 
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ELM-free, MHD quiescent periods > 150 ms were identified 
and partitioned into 15-40 ms bins for turbulence analysis 
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Populated database with pedestal turbulence measurements 
and transport-relevant plasma parameters 

•  Database with 129 observations 
from 29 discharges 

BT0 = 4.5 kG 
Ip = 700-900 kA 
15-45 ms averaging 

•  Turbulence quantities are 
consistent with DW turbulence 
Lc/ρi ≈ 8 – 18 
kθρi ≈ 0.07 – 0.31 
τd/(a/cs) ≈ 2.6 – 6.5 
τdω*pi ≈ 0.04 – 0.28 
ñ/n ≈ 1%-4% 

•  Transport-relevant parameters 
–  ne, ∇ne, 1/Lne, Te, ∇Te, 1/LTe, 

Ti, ∇Ti, 1/LTi, vt, ∇vt, q, ŝ, νe, νi, β, 
βe, nped, ΔRped, δr

sep 
–  generally 50%-300% variation 
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∆Rped ≈ 15 cm 



A search algorithm identified many linear regression models 
among turbulence quantities and plasma parameters 
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6 representative models for Lc/ρs 

•  Many models exist in high 
dimensional xk space 
–  Models are error local minima 

•  Screen models for good statistics 
–  High statistical significance 

t-statistics ➞ P(H0: αk=0) < 5% 
–  Low multicollinearity 

Pair-wise corr. ➞ max(|Cjk|) < 0.6 
Var. inflation factor ➞ max(VIFk) < 5 

–  Normally distributed residuals 
P(ε) ➞ Skew and Ex. Kurt. within 2σ 
Studentized residuals ➞ no outliers 

Should we try to identify a single 
“best” model? 

Not a good idea because… 
•  Highly subjective 
•  Each model contains only a 

few (3-4) plasma parameters 

Is there a better method? 



Model aggregation is helpful when working with many 
possible predictor variables with complex interdependencies 
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Scalings are robust 
across models, regardless 
of number or combination 
of parameters in models 

Model aggregation advantages: 
•  Identify more parameter scalings 

than single model 
•  Scalings are robust across 

different models 



Model aggregation for Lc increases (α>0) with ∇ne, ν, βe, 
and nped;  Lc decreases (α<0) with Ti, ∇Ti, and ∇Vt 
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Scalings are robust 
across models with 
different parameter 

combinations 



Observed scalings can help identify turbulent modes 
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kθ scalings are opposite to 
Lc scalings as expected 
(kθ~1/Lc for broadband 

turbulence) 

That’s a lot of 
scalings, but what 
does it all mean? 



Transport models link transport and turbulence quantities 

Transport models (crude, but useful) 

assume Lr∝Lp (random walk) and ignore cross-phases (nonlinear 
mixing) 
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Nonlinear mixing 

•  Trapped electron mode (TEM) turbulence 
–  Theory (Peeters et al, PoP, 2005 and Lang et al, PoP 2007) 

•  Driven by ∇ne and ∇Te 
•  Stabilized by collisions and low Te/Ti  
•  Dissipative TEM (DTEM) requires collisions 

– Observed scalings 
•  Lc increases and kθ decreases with ∇ne, consistent with 

TEM-driven transport 
•  ν scalings point to DTEM, not collisionless TEM 
•  Te and Ti scalings are also consistent with TEM 



ITG and KBM turbulence assessment 
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•  Ion temperature gradient (ITG) turbulence 
–  Theory (Kotschenreuther et al, PoP, 1995) 

•  Driven by ∇Ti 
•  Collisions, low Te/Ti, and high ∇ne are stabilizing 

– Observed scalings 
•  ∇Ti, ∇ne, and νi

* scalings are inconsistent with ITG-driven 
transport 

•  However, Ti scalings are consistent with ITG 

•  Kinetic ballooning mode (KBM) turbulence 
–  Theory (Snyder et al, PoP, 2001 and Guttenfelder et al, PoP, 2012) 

•  Driven by ∇P with critical βe 
– Observed scalings 

•  βe scalings are consistent with KBM-driven transport 
•  ∇Ti, 1/LTe, and ∇ne scalings show mixed agreement 



µ-tearing assessment and recap 
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•  Microtearing (MT) turbulence 
–  Theory (Guttenfelder et al, PoP, 2012) 

•  Driven by ∇Te 
•  Enhanced with collisions and higher βe 

– Observed scalings 
•  βe and ν scalings are consistent with MT-driven transport 
•  1/LTe scalings τd are inconsistent with MT-driven transport 

–  Note: NSTX core turb. simulations indicate BES would be insensitive 
to µ-tearing, but pedestal simulations point to mixed-parity modes 

•  Recap:  Observed scalings are … 

–  Partially consistent with TEM, KBM, and MT-driven transport 

–  Least consistent with ITG-driven transport 



Turbulence reduction by equilibrium and zonal E×B flows 
can be inferred from observed scalings 

•  ∇vt scalings for Lc and kθ consistent with turbulence 
suppression by equilibrium E×B flow shear 
– Lc decreases and kθ increases at higher ∇vt 

•  Er sclaings for τd are consistent with turbulence 
decorrelation by ExB flow shear 

•  Collisionality scalings consistent with collisionally-
damped zonal flows 
– Lc increases at higher ν 

•  nped and ∆Rped scalings consistent with empirical 
relationship between wider pedestals and larger 
turbulent structures (Z. Yan et al., PoP 18, 056117 
(2011)) 
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Recent ñ/n scalings reinforce previous results 

•  Most consistent with TEM, 
KBM, and MT instabilities 

•  Least consistent with ITG 
•  Positive scalings with 

– ∇ne and 1/Lne 

–  νi
* (and other ν quantities) 

–  βp 

•  Negative scalings with 
– ∇Ti and 1/LTi 

–  ŝ 
–  Er and Vt 

•  Scalings consistent with 
equilibrium and zonal ExB 
turbulence suppression. 

•  Scalings consistent with 
larger ñ/n at edge. 
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Linear growth rates from GEM gyrokinetic simulations 
show scalings consistent with measured Lc scalings 
GEM* global (pedestal) simulations with 6 ≤ n ≤ 15 and kθρs ~ 0.2  

indicate instabilities are electromagnetic, destabilized by collisions, 
and exhibit both ballooning and tearing parity 
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5 of 6 ∇ne scenarios indicate low-n 
growth rates increase at higher ∇ne 

7 of 7 ∇Ti scenarios indicate low-n 
growth rates decrease at higher ∇Ti 

GEM γ dependencies on ∇ne and ∇Ti are consistent with observed Lc scalings  
* Y. Chen and S. Parker, J. Comp. Phys. 220, 839 (2007) 
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Linear GEM simulations point to mixed-parity modes 
and highlight the importance of collisions 
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Collisions increase γ at low-n  
(decrease γ at high-n) 

Low-n modes consistent 
with observed scalings that 
show lower kθ at higher ν	


GEM φ contours in plane ⊥ B (n=6) 

low k high k 

Collisional Collisionless 

n=6 

n=24 

mixed parity even parity 



Lc and kθ from BOUT++ pedestal simulations 
compare favorably with measurements 
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Initial value 3D Braginskii fluid simulations evolve ni, ω, j||, A||, Ti, and Te  
with collisionality, E×B advection, field line curvature, and drive terms for j|| 

and ∇P.  Simulations do not include toroidal rotation and parallel advection. 

Lc/ρi ~ 8 is in line with measurements, but 
kθρi ~ 0.7-1.4 is higher than measurements 



BOUT++ parameter scans point to larger fluctuation 
amplitudes at lower ∇ni and higher ∇Ti 
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• ∇ni and ∇Ti trends from Braginskii model do not reproduce observed 
scalings 
•  Highlights the importance of electron dynamics for TEM and MT physics 
•  Demonstrates that simple, order-of-magnitude comparisons (e.g. correlation 

length) can lead to erroneous inferences 
• Will benefit from BOUT++ gyrofluid model ➞ X. Xu et al, in press, PoP (2013) 



Summary 

•  ST parameter regime can extend the parameter space and 
confidence in pedestal models 

•  We measured pedestal turbulence parameters in NSTX 
H-mode plasmas during ELM-free, MHD quiescent periods 
(with Li conditioning) 

– Lc/ρi ~ 12  kθρi ~ 0.2   τd/(a/cs) ~ 5  ñ/n ~ 1%-4% 

•  Parametric dependencies for pedestal turbulence meas-
urements are most consistent with TEM turbulence and 
partially consistent with KBM and µ-tearing turbulence 

– GEM gyrokinetic simulations show linear γ scalings 
consistent with measure Lc scalings for ∇ne and ∇Ti  
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Future work 
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•  Extend measurements and analysis to radial Lr and kr 

•  Radial and poloidal wavenumber spectra 

•  Flow fluctuations and time-delay estimation 
–  Predator-prey model between flow fluctuations and turbulence 

parameters 

•  Nonlinear global (pedestal) gyrokinetic and gyrofluid 
simulations 


