

Low-wavenumber pedestal turbulence in NSTX: measurements, parametric scalings, and simulations

David R. Smith¹, W. Wan², R. Fonck¹, S. Kaye³, G. McKee¹, S. Parker², R. Bell³, Y. Chen², A. Diallo³, B. Dudson⁴, B. LeBlanc³, and M. Podesta³

¹ University of Wisconsin-Madison
 ² University of Colorado-Boulder
 ³ Princeton Plasma Physics Lab
 ⁴ University of York

US-EU Joint TTF Workshop Santa Rosa, CA April 8-12, 2013

The pedestal sets boundary conditions for the core and ejects structures that damage plasma-facing components

- Projections for ITER depend on accurate pedestal models
 - **ST parameter regime** (large ρ^* , high β , shaping, beam-driven flow) is a challenging environment for pedestal simulations
- Pedestal turbulence measurements in NSTX H-mode plasmas during ELM-free, MHD quiescent periods
 - Identify parametric dependencies between turbulence quantities and transport-relevant plasma parameters
 - Compare to turbulence models \rightarrow scalings point to TEM turbulence
 - Compare to pedestal turbulence simulations

Beam emission spectroscopy (BES) measures Doppler-shifted D_{α} emission from neutral beam particles

The beam emission spectroscopy (BES) system on NSTX measures fluctuations on the ion gyroscale with $k_{\perp}\rho_i \le 1.5$

- Radial and poloidal arrays spanning core to SOL
- 32 detection channels
- 2-3 cm spot size and $k_{\perp}\rho_i \le 1.5$

Pedestal turbulence measurements

- ELM-free, MHD quiescent H-mode with Li conditioning ullet
- $\Psi_{\rm N} \approx 0.8 0.95$ in steep gradient region

BES can measure poloidal correlation lengths (L_c), poloidal wavenumbers (k_{θ}), decorrelation times (τ_{d}), and amplitude (\tilde{n}/n)

Filtered data Auto-power spectra (dB [V²/Hz]) 05⁻ 07⁻ 05⁻ 05⁻05⁻ 05⁻ 05 Auto-power Filtered data (au) Auto-power spectra show 8-50 kHz spectra plasma turbulence signals photon noise (ref) above detector noise levels -2 • Filtered data (8-50 kHz) show dark noise -50 eddies moving down BES array 513 10 100 512.7 512.8 512.9 Frequency (kHz) Time (ms) Time-lag $k_{\theta} =$ cross-correlation = 9.9 cm0.8 0.16 cm⁻¹ Correlation 0 5.0 9.0 Correlation Time-lag cross-correlation gives: • Correlation length $C(x,\tau=0)$ Correlation 0.2 length • Decorrelation time $C_{max}(\tau)$ -0.50 -200 - 1000 100 200 Ο 5 10 Time lag (µs) • Eddy velocity $\Delta z / \Delta \tau_{lag}$ Channel separation (cm) 20 Dominant wavenumber $\tau_{\rm d} = 21.8 \,\mu {\rm s}$ Eddy 0.8 Fime lag (μs) 15 Correlation 9.0 9.0 Inferred from auto-correlation velocity and eddy velocity 10 Decorrelation 5 time 0.2 $v_g = 4.8$ km/s 0 5 10 0 15 5 10 0 Channel separation (cm) Time-lag (μ s)

D. R. Smith, TTF 2013

At the LH transition, L_{pol} increases and k_{θ} decreases

Also, measurements suggest eddy advection in lab frame shifts from *electron* to *ion* diamagnetic direction

ELM-free, MHD quiescent periods > 150 ms were identified and partitioned into 15-40 ms bins for turbulence analysis

Populated database with pedestal turbulence measurements and transport-relevant plasma parameters

- Database with 129 observations from 29 discharges
 B_{T0} = 4.5 kG
 I_p = 700-900 kA
 15-45 ms averaging
- Turbulence quantities are consistent with **DW turbulence** $L_c/\rho_i \approx 8 - 18$ $k_{\theta}\rho_i \approx 0.07 - 0.31$ $\tau_d/(a/c_s) \approx 2.6 - 6.5$ $\tau_d \omega^*{}_{pi} \approx 0.04 - 0.28$ $\tilde{n}/n \approx 1\%$ -4%
- Transport-relevant parameters
 - $\begin{array}{l} \begin{array}{l} \textbf{n_{e}, } \nabla \textbf{n_{e}, 1/L_{ne}, } T_{e}, \ \nabla T_{e}, \ 1/L_{Te}, \\ Ti, \ \nabla T_{i}, \ 1/L_{Ti}, \ v_{t}, \ \nabla v_{t}, \ q, \ \$, \ v_{e}, \ v_{i}, \ \beta, \\ \beta_{e}, \ n_{ped}, \ \Delta R_{ped}, \ \delta_{r}^{sep} \end{array}$

NSTX-U

generally 50%-300% variation

D. R. Smith, TTF 2013

A search algorithm identified many linear regression models among turbulence quantities and plasma parameters

- Many models exist in high dimensional x_k space
 - Models are error local minima
- Screen models for good statistics
 - − High statistical significance t-statistics → $P(H_0: \alpha_k=0) < 5\%$
 - Low multicollinearity Pair-wise corr. $\rightarrow max(|C_{jk}|) < 0.6$ Var. inflation factor $\rightarrow max(VIF_k) < 5$
 - Normally distributed residuals
 P(ε) → Skew and Ex. Kurt. within 2σ
 Studentized residuals → no outliers

6 representative models for L_c/ρ_s

Model	α_k coefficients									
R^2	∇n_e	T_e	T_i	$1/L_{Ti}$	∇V_t	$ u_e$	n_{ped}			
0.63	0.28	_	-0.20	-0.29	_	0.31	_			
0.63	0.34	_	—	_	-0.37	0.30	_			
0.61	0.46	-0.21	_	_	-0.38	_	_			
0.60	—	_	_	_	-0.47	0.38	0.24			
0.60	—	—	-0.22	-0.35	_	0.40	0.15			
0.55	_	-0.24	_	_	-0.55	_	0.36			

Should we try to identify a single "best" model?

Not a good idea because...

- Highly subjective
- Each model contains only a few (3-4) plasma parameters

Is there a better method?

Model aggregation is helpful when working with many possible predictor variables with complex interdependencies

Scalings are **robust** across models, regardless of number or combination of parameters in models

TABLE II: α_k coefficients for a subset of L_c/ρ_s models												
Model			α_k coefficients									
R^2	∇n_e	T_e	T_i	$1/L_{Ti}$	∇V_t	$ u_e $	n_{ped}					
0.63	0.28	_	-0.20	-0.29	_	0.31	_					
0.63	0.34	_	_	_	-0.37	0.30	_					
0.61	0.46	-0.21	_	_	-0.38	_	_					
0.60	_	_	_	_	-0.47	0.38	0.24					
0.60	_	_	-0.22	-0.35	_	0.40	0.15					
0.55	-	-0.24	_	_	-0.55	_	0.36					

Model aggregation advantages:

- Identify more parameter scalings than single model
- Scalings are robust across different models

Model aggregation for L_c increases (α >0) with ∇n_e , ν , β_e , and n_{ped} ; L_c decreases (α <0) with T_i, ∇T_i , and ∇V_t

Observed scalings can help identify turbulent modes

Transport models link transport and turbulence quantities

- Trapped electron mode (TEM) turbulence
 - Theory (Peeters et al, PoP, 2005 and Lang et al, PoP 2007)
 - Driven by ∇n_e and ∇T_e
 - Stabilized by collisions and low T_e/T_i
 - Dissipative TEM (DTEM) requires collisions
 - Observed scalings

- L_c increases and k_θ decreases with $\nabla n_e,$ consistent with TEM-driven transport
- ν scalings point to **DTEM**, not collisionless TEM
- T_e and T_i scalings are also **consistent** with TEM

ITG and KBM turbulence assessment

- Ion temperature gradient (ITG) turbulence
 - Theory (Kotschenreuther et al, PoP, 1995)
 - Driven by ∇T_i
 - Collisions, low T_e/T_i , and high ∇n_e are stabilizing
 - Observed scalings
 - $\nabla T_i, \ \nabla n_e, \mbox{ and } \nu_i^* \mbox{ scalings are inconsistent with ITG-driven transport}$
 - However, T_i scalings are consistent with ITG
- Kinetic ballooning mode (KBM) turbulence
 - Theory (Snyder et al, PoP, 2001 and Guttenfelder et al, PoP, 2012)
 - Driven by ∇P with critical β_e
 - Observed scalings
 - β_e scalings are **consistent** with KBM-driven transport
 - ∇T_i , 1/L_{Te}, and ∇n_e scalings show mixed agreement

μ-tearing assessment and recap

- Microtearing (MT) turbulence
 - Theory (Guttenfelder et al, PoP, 2012)
 - Driven by ∇T_e
 - Enhanced with collisions and higher β_e
 - Observed scalings
 - β_{e} and ν scalings are **consistent** with MT-driven transport
 - 1/L_{Te} scalings τ_d are inconsistent with MT-driven transport
 - Note: NSTX core turb. simulations indicate BES would be insensitive to μ -tearing, but pedestal simulations point to mixed-parity modes

- Recap: Observed scalings are ...
 - Partially consistent with TEM, KBM, and MT-driven transport
 - Least consistent with ITG-driven transport

Turbulence reduction by equilibrium and zonal E×B flows can be inferred from observed scalings

 ∇v_t scalings for L_c and k_θ consistent with turbulence
 suppression by equilibrium E×B flow shear

– L_c decreases and k_{θ} increases at higher ∇v_t

- E_r sclaings for τ_d are **consistent** with turbulence decorrelation by ExB flow shear
- Collisionality scalings consistent with collisionallydamped zonal flows

– L_{c} increases at higher ν

n_{ped} and ∆R_{ped} scalings consistent with empirical relationship between wider pedestals and larger turbulent structures (Z. Yan et al., PoP 18, 056117 (2011))

Recent ñ/n scalings reinforce previous results

- Most consistent with TEM, KBM, and MT instabilities
- Least consistent with $\ensuremath{\text{ITG}}$
- Positive scalings with
 - $-\nabla n_e$ and $1/L_{ne}$
 - $-\nu_i^*$ (and other ν quantities)
 - $-\beta_p$
- Negative scalings with
 - $-\nabla T_i$ and $1/L_{Ti}$
 - Ŝ
 - $E_{\rm r}$ and $V_{\rm t}$
- Scalings consistent with equilibrium and zonal ExB turbulence suppression.
- Scalings consistent with larger ñ/n at edge.

(0)

Linear growth rates from GEM gyrokinetic simulations show scalings consistent with measured L_c scalings

GEM^{*} global (pedestal) simulations with $6 \le n \le 15$ and $k_{\theta}\rho_s \sim 0.2$ indicate instabilities are **electromagnetic**, destabilized by **collisions**, and exhibit both **ballooning** and **tearing parity**

5 of 6 $\nabla n_{\rm e}$ scenarios indicate low-n growth rates increase at higher $\nabla n_{\rm e}$

NSTX-U

7 of 7 ∇T_i scenarios indicate low-n growth rates decrease at higher ∇T_i

GEM γ dependencies on ∇n_e and ∇T_i are consistent with observed L_c scalings

* Y. Chen and S. Parker, J. Comp. Phys. 220, 839 (2007)

D. R. Smith, TTF 2013

Linear GEM simulations point to **mixed-parity** modes and highlight the importance of **collisions**

Low-n modes consistent with observed scalings that show lower k_{θ} at higher v

L_c and k_{θ} from BOUT++ pedestal simulations compare favorably with measurements

Initial value 3D Braginskii fluid simulations evolve n_i , ω , j_{\parallel} , A_{\parallel} , T_i , and T_e with collisionality, E×B advection, field line curvature, and drive terms for j_{\parallel} and ∇P . Simulations do not include toroidal rotation and parallel advection.

D. R. Smith, TTF 2013

BOUT++ parameter scans point to larger fluctuation amplitudes at **lower** ∇n_i and **higher** ∇T_i

- ∇n_i and ∇T_i trends from Braginskii model do not reproduce observed scalings
 - Highlights the importance of **electron dynamics** for TEM and MT physics

(D) NSTX-U

VISCONSIN

- Demonstrates that simple, order-of-magnitude comparisons (e.g. correlation length) can lead to erroneous inferences
- Will benefit from BOUT++ **gyrofluid** model \rightarrow X. Xu et al, in press, PoP (2013)

Summary

- ST parameter regime can extend the parameter space and confidence in pedestal models
- We measured pedestal turbulence parameters in NSTX H-mode plasmas during ELM-free, MHD quiescent periods (with Li conditioning)

 $-L_c/\rho_i \sim 12 \quad k_{\theta}\rho_i \sim 0.2 \quad \tau_d/(a/c_s) \sim 5 \quad \tilde{n}/n \sim 1\%-4\%$

• Parametric dependencies for pedestal turbulence measurements are most consistent with **TEM turbulence** and partially consistent with **KBM and** μ -tearing turbulence

– **GEM** gyrokinetic simulations show linear γ scalings **consistent** with measure L_c scalings for ∇n_e and ∇T_i

Future work

- Extend measurements and analysis to radial L_r and k_r
- Radial and poloidal wavenumber spectra
- Flow fluctuations and time-delay estimation
 - Predator-prey model between flow fluctuations and turbulence parameters
- Nonlinear global (pedestal) gyrokinetic and gyrofluid simulations

