

Dan Boyer R. Andre, J. Carlsson, D.A. Gates, S. Gerhardt, S. Kaye, J. Menard, F. Poli TRANSP as a control design tool TRANSP User Group Meeting May 4-5, 2017

TRANSP as a control design tool

- Motivation for model-based control design
- Current implementation of control in TRANSP
- Example applications
- Challenges, plans, and opportunities

Complexity of control problems motivates use of model-based control design

• **By incorporating dynamic models in the design process, control algorithms can be made to handle all of these issues**

The need for high-fidelity control simulations

• Control design typically relies on **reduced modeling** to make the design problem easier **(TRANSP can contribute to this)**

- When tested experimentally, the **nonlinearities** and **coupling** of the actual system **may degrade performance**
	- Dedicated experimental time needed for commissioning
- Testing controllers using the integrated modeling code **TRANSP** prior to implementation may:
	- Improve controller performance and **reduce time for commissioning and fine tuning**
	- Enable demonstration of **new control techniques** to justify implementation and experimental time

Control has been implemented using external code: the Expert file Monical bouble and Export is

- Based on **scenario development** work done by **Stefan Gerhardt** TRANSP production code • Expert subroutine called at many places throughout
- An identifier is passed along with the call
- $\frac{1}{\sqrt{2}}$ – different snippets of code can be run at different points during the **Modification** framework needed to simulation
- Custom run-specific code can be run at each call to 2. Ensure evolution of **stored energy satisfies confinement scaling 3. Control Control Law Without Would typically be** input ahead of time) based on the state of the simulation manipulate certain variables (which would typically be

Ability to change actuators in `real-time', i.e., based on feedback control

Ability to change actuators in `real-time', i.e., based on feedback control

Ability to change actuators in `real-time', i.e., based on feedback control

Some recent applications/publications

- Stored energy and q_0 control for NSTX-U [Boyer, et al., Nuclear Fusion 2015]
- Rotation profile control for NSTX [Goumiri, et al., Nuclear Fusion 2016]
- Control of the safety factor profile on NSTX-U [Ilhan, Ph.D. thesis 2016]
- Rotation profile and stored energy control for NSTX-U [Goumiri, et al., Physics of Plasmas 2017]
- **Control of non-inductive scenarios on NSTX-U** [Boyer, et al., Nuclear Fusion 2017]

A major goal of NSTX-U is to study noninductive operation

- A spherical torus based design may be an economical option for a **fusion nuclear science facility (FNSF)**
- However, designs have little to **no room for a central solenoid** – Plasma current would need to be **generated non-inductively**
- The upgrades to the device in the **NSTX-U** project will enable the **study of non-inductive scenarios**
	- Start-up, ramp-up, and flattop current sustainment
- Early experiments will look at **non-inductive current sustainment** after inductive start-up/ramp-up
	- Solenoid current will be `frozen' to **mimic solenoid-free operation**
	- Plasma current evolution determined by **coupling between kinetic and magnetic profiles**
	- Resulting dynamics may be **intolerably slow** and highly **sensitive to perturbations** in profiles, confinement, etc.
- Can **feedback control** with the available actuators be used to **improve response** and achieve desired conditions?

TRANSP predictive simulation approach

- **prescribed boundary**
- **Electron temperature** evolved using **ITER98** scaling
- **Prescribed:** H-factor, total particle inventory, Z_{eff}, electron density/temperature profile shapes, beam power, plasma boundary

 Z_{eff} : prescribed

Reference simulation evolves slowly toward steady-state, is sensitive to profile shapes

Time [s]

- **NB sources**: 1B, 1C, 2A, and 2B
- **Outer gap**: 14cm
- Broad **ne, Te profiles** from NSTX 142301
- **Particle inventory** held fixed during simulation
- Slow evolution to 100% noninductive in both reference (broad) and peaked profile case
	- Using peaked profiles results in similar β_{N} , lower current and higher q0

Dynamic system ID based on modulation of beams and outer gap in TRANSP

- Open loop signals applied to each actuator
- Prediction-error method used to determine optimal model parameters for a chosen model order using part of data set (estimation set)
- Remainder of data (validation set) used to determine best model order (number of states)

Actuator constraints and strong coupling limit the controllability of the scenario

- Many more actuators than controlled outputs
	- However, only two outputs independently controllable
- Several actuators have similar effects on the outputs
- Beams are only uni-directional since they are either at there minimum or maximum in the reference scenario

Effect of maximum positive change in actuator shown with solid bar, maximum negative change shown with empty bar. 1A considered fixed on to

Multi-component model-based controller proposed to handle complexity of problem

- Each component uses an optimal control approach to minimize a cost function weighting outputs and actuator effort
	- More complex design than PID, but makes tuning more intuitive for operators
	- Each block has some 'expert' settings that would be set up during commissioning
	- Operators can then change reference, targets, and weighting of actuators and outputs

Closed-loop TRANSP simulations used to test effect of disturbances on performance

• Reference evolution can be recovered with +10% confinement *βN weighted less than other outputs in this example*

ONSTX-U

TRANSP as a control tool, M.D. Boyer, TUG2017, May 4-5, 2017 16

Challenges to using TRANSP for control

• **Simplified models** (like confinement scaling) are currently implemented in the Expert file

– Hard to maintain, share with others

- Expert file has to handle gathering **'measurements'** and sending **actuator requests**
	- Need to develop **synthetic diagnostics**, add **noise**, etc.
	- **Time stepping** in TRANSP makes actuator requests **complex**
- **Mimicking the PCS in Expert file** is not easy
	- PCS has ~20 different algorithms running at any given time (each of which may be 100s-1000s of lines of code), with hundreds of set-up parameters
	- PCS can switch between algorithms based on operator set up or changes to plasma conditions (e.g., disruption detection)

Potential solutions

- Implement **simplified models within TRANSP**
	- Enable replacing transport module with confinement scaling or neural network model for faster preliminary simulations
- Implement modules to generate **synthetic diagnostics**
	- Magnetics, profile diagnostics, etc.
		- Include noise, latency
- Implement modules for **simplified (or detailed) actuator models**
	- Power supply switching, gas puff delays, etc.
	- Handle the time stepping issues automatically
- Implement an **interface to external control algorithms**

Additional benefits of suggested features

- Predictive simulations with feedback
	- Control stored energy, profiles, density etc. in self-consistent and realistic ways during scans
- Include TRANSP in ITER Plasma Control System Simulation Platform (Simulink based)
- Set up predictive runs using the PCS GUI
	- Flight simulator for physics operators, easy to view changes, restore previous shots or parts of shots
- Adding simplified modules for different physics could enable faster preliminary predictive simulations
	- Confinement scaling, neural networks, etc.
	- Use for optimization and scans, use more complex models once broader studies are complete

Thank you!

Back up

Scenario is also sensitive to disturbances in density and confinement

Density disturbances (+15%, -10%)

Time [s]

Confinement disturbances (+10%, -10%)

ONSTX-U

Design goal: Improve response, reject disturbances, + enable tracking w/ feedback

- Control q_{0} , β_{N} , and I_{p} by varying beam sources, outer gap
	- Outer gap affects outputs through **beam deposition** profile and **bootstrap current**
- Initially tried simple PI (proportional-integral) controllers
	- Difficult to tune due to actuator constraints and coupling
- Developed a model-based multi-input-multi-output control approach to explicitly handle:
	- Coupling
	- Actuator constraints
	- Disturbances, tracking
	- Noisy measurements
- Resulting control law tested in feedback TRANSP simulations **the two references** conducting structures conducting the two references conductions

Observer estimates states and disturbances, feedforward compensator tracks targets.

- **Observer** mitigates the effect of **noisy measurements** and input **disturbances**, ensuring **smooth estimates with no steady-state error**
	- Provides **estimate of disturbances** to feedforward compensator *Online estimate of*

disturbance provides integral action

– Provides **state estimates** for feedback control

• **Feedforward compensator** determines actuator values to **optimize a cost function** weighting **steady-state error** and **actuator effort**

ONSTX-U

TRANSP as a control tool, M.D. Boyer, TUG2017, May 4-5, 2017 30

Feedback improves system response, anti-windup mitigates actuator limit effects.

• **Feedback controller** acts on difference between **feedforward target states** and **observer estimated states** *Faster response*

– Allows response time of system to be improved *compared to feedforward only*

- **Actuator saturation** changes the 'direction' of applied feedback
	- Can cause **degraded tracking** of constrained targets
	- **Anti-windup redistributes actuator request** to reduce effect of saturation, **hides effect of saturation** from feedback law *Target tracked more closely with anti-windup*

TRANSP as a control tool, M.D. Boyer, TUG2017, May 4-5, 2017 31 31 31