TRANSP in OMFIT

by B.A. Grierson¹, X. Yuan¹, N.C. Logan¹, O. Meneghini², S.P. Smith² J. Buchanan³, M. Fitzgerald³

¹Princeton Plasma Physics Laboratory
 ²General Atomics
 ³CCFE

Presented at the 2017 TRANSP Users Meeting

Princeton, NJ

May 4-5 2017

Advantages of Using OMFIT for Your Transport Studies with TRANSP

- One common tool for many tokamaks only required to learn one interface for DIII-D, NSTX, JET, etc...
 - We've learned a lot about present and legacy physics assumptions by building a common tool and fostered collaborations
- Leverage the experience, workflows and visualizations from a large TRANSP user community
 - No need for each machine/institution/ person to re-invent the same wheel over and over again!
- Contribute your wisdom, intuition, and productivity capabilities to the community
 - Propagate to the future, retain institutional knowledge

TRANSP Usage Has Expanded Rapidly Through the Production Capability of OMFIT

DIII-D

László Bardóczi Igor Bykov Jie Chen Luo Chen Xi Chen Colin Chrystal Mitchell Clement **Cami Collins** Lang Cui William Eggert David Eldon Darin Ernst Jeremy Hanson Shaun Haskey **Bill Heidbrink Edward Hinson Chris Holcomb Chris Holland** Wenhui Hu Matthias Knölker

Daniel Lin David Weisberg Nikolas Logan **Robert Wilcox** Alessandro Marinoni Theresa Wilks Joseph McClenaghan Maiko Yoshida Orso Meneghini Yubao Zhu Masanori Murakami Kathreen Thome Filomena F Nave **Benjamin John Tobias** Raffi M. Nazikian Patrick Vail Michio Okabayashi **Brian Victor** Takuma Wakatsuki **Dmitriy Orlov** Jai Sachdev Hexiang Wang **David Weisberg** Sterling Smith **Robert Wilcox** Wayne Solomon **Choongki Sung** Theresa Wilks Maiko Yoshida Kathreen Thome **Benjamin John Tobias** Yubao Zhu Patrick Vail **Brian Grierson Brian Victor** Takuma Wakatsuki

Hexiang Wang

JET

James Buchanan Michael Fitzgerald Filomena Nave Krassimir Kirov David Keeling J Ferreia Fulvio Auriemma Yuriy Baranov Francesca Poli Jacob Eriksson

Ziga Stancar

Stan Kaye

Steve Sabbagh

Vlad Soukhanovskii

Jai Sachdev

Brian Grierson

Orso Meneghini

Pablo Rodriguez-Fernanadez

Lang Cui

Existing and Expanding Capabilities for TRANSP in OMFIT Workflow Manager

- Prepare and submit TRANSP for DIII-D, NSTX, JET, C-MOD (from MDSplus), EAST (from MDSplus)
- Output modules for TRXPL, TIME_SLICES, GET_FBM (+plotting), BOXN0 (+plotting), birth (+plotting)
- "Compare to experiment" button for verification
- Comprehensive plotting with OMFIT's RPLOT

- "Flight Simulator" workflow for designing shots (user Ip, Bt, profiles, heating)
- tr_look, tr_cleanup available through the GUI, tr_fetch coming soon for CDF and ACFILEs
- Plotting CDF file output developed in last few week
- Soon search, review plots and export options using CDF file

New and

soon

Common Set of Verification Metrics are Emerging Including Workflows for Assessing Systematic Uncertainties

Run Plot	RPLOT	TRXPL	TIME SLICES	FBM	BIRTH	Load Existing Run	Cleanup Run						
Basic Plotting of Single Run													
OMFIT['TRANSP']['GUIS']['PLOTgui']													
Can't find something? >> Update Plot Dictionary <<													
Data Type = Scalar function of time $f(t), f(x,t), multigraphs -$													
Filter = 'neutron' Search tool								d					
Scalar function of time quantity to plot = MNEUT: MEASURED NEUTRONS [N/SEC]													
Plot options = {'marker': ", 'linestyle': '-'}													
Plot in = new figure													
Plot													
Compare to Experiment													

 Every analyst requested to put "Compare to Experiment" in their analysis workbooks

B.A. Grierson / TUG / May 2017

Variable Scan Permits Sensitivity Analysis to Systematic Changes in Profiles

Form inputs	Look at Runing Job	RPLOT	Load Existing Run	Scan	Design Shot	Clean	up I	Run						
OMFIT['TRANSP']['GUIS']['SCANgui']														
TRANSP Scan Requires a Succefully Prepared Run														
*This capability can use significant resources *Please use sparingly														
Verify original run before submitting a scan														
Namelist Variable = "								?						
Operation = Scan Value d														
Values = [0.0]														
Preview Scan														
Run Scan														

 Scan fast-ion diffusion, Zeff, etc... for input data consistency and verification

Scan Fast-ion Diffusion, Create New UFILE, Run

B.A. Grierson / TUG / May 2017

Scan Fast-ion Diffusion, Create New UFILE, Run

Zeff Scan Leverages Different Sensitivities to Core, Broad and Edge Quantities

Zeff Scan Leverages Different Sensitivities to Core, Broad and Edge Quantities

SC_ZF2 scans Zeff without modifying UFILE data

Zeff Scan Leverages Different Sensitivities to Core, Broad and Edge Quantities

 Slope of response from core neutrons, stored energy and loop voltage are different and opposite sign (for V_{sur})

Flipping Inputs and Outputs -> Interpretive Analysis to Predictive Simulation

- Predictive runs will replace the transport flux with a transport model
 - Transport models produce flux given gradients (GLF23, TGLF, MMM)
 - Transport solver required to solve nonlinear system (PT_SOLVER, TGYRO, FASTRAN)
- Final result of evolution/iteration matching is a new profile

Initialize X=X measured

Model flux = F(a/L_T, a/L_n, T_e/T_i, q, κ, ...)
 will not match power balance
 Evolve/iterate until matches
 → predicted profile

New profiles for gradients and sources

TRANSP PT_SOLVER Available as Standalone for Anyone with Direct Login to PPPL Computers Driven by OMFIT Workflow

- Select relatively stationary time in discharge and average with TRXPL
 - "Ramping" conditions inappropriate for snapshot analysis; flux can be negative
- Note Q_e, Q_i from TRANSP depend on Te/Ti so power balance flux recomputed at each time step "dynamic exchange"
- Produces predicted profiles inside of boundary condition

$$\partial X / \partial t + \nabla \cdot \mathbf{F} = S$$

0 as $t \rightarrow \infty$

$$X(\rho) = X^* \exp[\int d\rho a/L_X(\rho)]$$

Profile B.C. Elux-matching

Time-Dependent Prediction Permits Time-Evolving Equilibrium, Profiles and External Actuators

- TRANSP run initialized without auxiliary heating
 - Predictive run may begin during high power phase; high temperature but effectively zero source
- Requires time for beams to "build up" synchronizing profiles and heating sources
- Prediction carries profiles forward after transient establishment of power balance flux matching

Predictive TRANSP Provides Profiles and OMFIT Computes ITPA Validation Metrics

Predictive TRANSP Provides Turbulence Spectrum and OMFIT Provides ITPA Validation Metrics

- Profiles provide performance prediction but the physics is in turbulence spectrum
 - Say more here
- Growth rate γ(ky) and frequency spectrum ω(ky) produced at each radius and each time
 - Tells you if ITG/TEM/ETG, etc...

Predictive TRANSP Provides Turbulence Spectrum and OMFIT Provides ITPA Validation Metrics

- Profiles provide performance prediction but the physics is in turbulence spectrum
- Growth rate γ(ky) and frequency spectrum ω(ky) produced at each radius and each time

Predictive TRANSP Provides Turbulence Spectrum and OMFIT Provides ITPA Validation Metrics

- Profiles provide performance prediction but the physics is in turbulence spectrum
- Growth rate γ(ky) and frequency spectrum ω(ky) produced at each radius and each time

OMFIT is Integrating TRANSP as a Component in a Workflow Manager for Analysis and Design Tool

- Commonly, TRANSP preparation tools at the various labs assume existing tokamak data
 - i.e. trSetup [shot], DIII-D autotransp tools, etc...
- OMFIT allows you to "drop in" H&CD from a different shot
- OMFIT "design shot" workflow requires only equilibrium boundary shape and user can design entire discharge

Designing a New Experiment as Tokamak "Flight Simulator" in OMFIT

- Critical step is establishing the "controllable" quantities
 - Equilibrium boundary shape, toroidal field, plasma current and H&CD powers (timing, aiming) typically delivered by pre-program request and feedback
- Assumptions about the pedestal are typically required
 - Self-consistent time-dependent core +pedestal modeling is an emerging capability
- OMFIT allows you to seamlessly replace experimental data with "designed conditions"

"Flight Simulator" Requirements

- Boundary shape from reference EQ
- B_t(t), I_p(t), V_{sur}(t) control points
- Heating systems aiming, timing and power
- Initial profiles
- Pedestal profiles (n_e , T_e , T_i , Ω) and Z_{eff}

"Flight Simulator" Can Predict

- Core profiles (ne, Te, Ti, Ω),
 stored energy, performance
- Current and q-profile evolution
- Free-boundary equilibrium
- Diagnostics (MSE, CO2)

One of the Simplest Relevant Examples is Adding ECH Power to Existing NBI Heated Shot

 Program the ECH and NBI and then predict what will happen

Predictive TRANSP Runs Directly Compared to Any other TRANSP run: Predictive or Interpretive

- ECH heating raises T_e, Ti less so
- Energy confinement degrades

OMFIT Provides Powerful Capability for Preparing, Executing and Visualizing TRANSP Analysis and Predictions

- Single platform for all supported tokamaks + large user community
- Powerful visualization and post-processing capabilities
 - Fast-ion diffusion scans, Zeff scans, etc...
 - Predictive simulations
 - GLF23, MMM, TGLF
- Namelist variable scan for submitting many runs at once
- Input data scaling for sensitivity analysis and uncertainty quantification

