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Ip diffusion
* During the M6 campaign, an experiment was executed looking at the effect
of different Ip ramp-rates and density on the resultant g-profile.

« Inthe TRANSP analysis, it was found that toroidal current diffused faster
than predicted by the TRANSP Poloidal Field Diffusion Equation (PFDE)
assuming neoclassical resistivity, even though surface voltage check

appeared OK.
« It was suggested that the issue was to do with NBI fast ion population.
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Ip diffusion — ramp-up/ramp-down
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* Measurements in Ohmic plasmas Ip ramp-up and Ip-ramp-down show
modelled current diffusion faster than seen in experiment (Keeling, EPS
2011)...
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_Stationary state _
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* Modelling of stationary state appears to satisfactorily reproduce the correct
current profile

« Still not understood what processes are involved in the anomalous
modelling during lp ramps.
TUG meeting - 5th May 2017
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MAST

Neutron emission
studies

|. Klimek and M. Cecconello
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First Benchmark of DRESS with TRANSP/NUBEAM
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Figure 5: Pulse 29909: ratio of TRANSP/NUBEAM to DRESS calculated a) thermonuclear, b) beam-thermal and c) beam-beam
emissivities at # = 0.216 s. The flux surface restricting the plasma region from which 99% of all neutrons are emitted is shown in
magenta. The ratios exceeding 1.2 are plotted in red while spatial points for which the evaluated ratio is zero or below 0.8 are plotted
in black.

« TRANSP/NUBEAM used to generate Fl distribution function for use with DRESS code

* DRESS computes neutron production rate using differential fusion reaction x-section.

* Images show ratio of neutron emission calculated by TRANSP and DRESS.

* Total neutron emission only changed by ~0.5% since largest relative differences in
local neutron emissivity (>20%) occur in plasma regions accounting for small
proportion of total neutron emission (<<1%).

Klimek et al, sub. Nuclear Fusion
TUG meeting - 5th May 2017
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First Benchmark of DRESS with TRANSP/NUBEAM
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Figure 7: Pulse 29909: a) beam-thermal, b) beam-beam and c) thermonuclear neutron emissivities along the plasma mid-plane pre-
dicted by TRANSP/NUBEAM (full circles and triangles) and DRESS (open circles and triangles) at # = 0.216 s. The circles and
triangles represent the neutron emissivities calculated along the mid-plane for points going from the plasma center to outboard and

inboard side, respectively.

* Mid-plane inboard/outboard neutron emission profiles calculated by TRANSP/
NUBEAM and DRESS agree very well!

Klimek et al, sub. Nuclear Fusion
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Modelling Fl loss using specific cuts in E and v||/v
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Figure 11: Plasma discharge 27527: a) Y, and Y7 modelled using LM1 when the cuts
presented in panels b), ¢) and d) were applied to fi(R, Z, E,v/v). Panels b), ¢) and d)
show f(R=0.98m,Z = —0.01 m, E, v /v) averaged over time interval 0.19 < ¢ < 0.20 s
when the following regions were selected for fast ion removal: b) v /v € [-0.2,0.2]
regardless of their energy, ¢) E € [0,37] keV regardless of their pitch angle and d)
E € [50,75] keV regardless of their pitch angle.
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Modelling Fl loss using specific cuts in E and v||/v
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Ad-hoc anomalous Fl Fishbone loss model used in this period:
diffusion term only used in LM1= all ions E<55keV and -0.5<v| | /v<0.5.
these periods (D=1.5m?s1) LM2= trapped ions only E<55keV and -0.5<v| | /v<0.5

with D=0.5m2s1

Klimek et al, Nuclear Fusion 55 (2015) 023003
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* Neutron emission rate reproduced accurately using
combination of anomalous Fl diffusion and selected Fl
losses

* Ongoing work: Comparison of available sawtooth
models Kadomtsev/Porcelli:

* Use sawtooth models to generate 2-D non-flux
averaged neutron emission before/after sawteeth

 Compare with experimental NC profiles

* Research to be presented at EPS later this year.



MAST
FIDA studies

O. Jones
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FIDA S|gnal change due to fishbones
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* A overestimates magnitude of FIDA change, B underestimates in core but matches at edge
* Conclude a spatially varying model necessary preferably based on first principles resonant
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MAST Upgrade
scenario specification
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MAST-U — Scenario specification

* The stated MAST-U “Top-level goals” include:

Development of a confinement scaling and ST relevant transport model
for plasmas with strong off-axis current drive, high plasma rotation
and gmin >1

Establishment of a strongly driven plasma scenario with sustained

operation at low /i, high k and H-mode confinement with mitigated (or
no) ELMs

Sustained operation of plasmas with high-Z plasma facing components
and tolerable core impurity accumulation (employing core electron
heating if required)

Demonstration of a integrated, non-solenoidal start-up scheme allowing
development of mega-amp current from breakdown
Sustained operation of a divertor concept in plasma conditions
(esp. target heat flux) relevant to power-plant scale devices

(i.e. Super-X)

TUG meeting - 5th May 2017
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Each of “The Magnificent 7”
demonstrates a different aspect SCENE equilibrium Common parameters:
of CTF/ITER/DEMO physics. > i; g e [p=1.2MA
P N ® K=2.5
FIESTA equilibrium *A=16
(__guided by SCENE * i(3)=0.5
A 4-beam system (10MW) was iL (except where stated
specified that would allow ( D otherwise)
achievement of all aims! TRANSP run from

FIESTA eqm. J

\\§
TRANSP TRANSP TRANSP TRANSP TRANSP TRANSP TRANSP
Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F Scenario G

« A1,A2 : baseline, CTF-like q profile, 2 density variants

« B : high fast particle content - confinement, f,=0.9, B\=6,

« C1,C2:long pulse, fy>1, By=6.7, reduced TF, 2 |, variants
« D : high B, 1,=2MA, q0~1, test fast particle 3 limit

- E:'touch-base’, high|; low 3

* F : high [¥]=0.6, B limit and confinement scaling

* G high thermal B (By up to 7), [,=2MA, n =1, B limit testing




* Since full 3/4-beam scenario simulations produced,
scope of project reduced — 2 beams in on/off-axis
locations, no cryo-pumping.

Extract from Hendrik Meyer ISTW2013 talk:
“Core Scope still delivers all main aspects:

Longer pulses

Flexible heating and fast-ion distribution
on axis Pyg < 2.5 MW
off-axis Pyg < 2.5 MW

New Divertor (Super-X, Snowflake, Conventional and in
between)

but will be limited at accessing low density and low
collisionality.”




Key features of Core Scope operation:

* l,up-to 2 MA, |4 up-to 3.2 MA (B, = 0.9 T at R=0.7m) possible after
integrated commissioning (not for first campaign)

« Closed divertor and wall pumping should allow exploration of lower
density regimes at least transiently (wall pumping + divertor filling ~ 1s)

 Most MAST Diagnostics will be available during first physics campaign.
— Final sequencing still to be decided.
— Early emphasis on divertor diagnostics (IR, DIVCAM)

» High elongation < 2.5 at [(2) < 1 should be possible with new RFPS

and P6 coils and passive structures.

— Performance assessed with typical large ELM response from MAST scaled by factor
of two in size and duration.




Plasma scenarios
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MAST Upgrade Stage 1

Double Beam Box
design
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Double Beam-box — original design
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» Current geometry: 2.7 deg lower beam tilt
» Angle dictated by physical size of source body
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Re-cap: MAST - Fl redistribution by fishbones
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MAST experlmental results from TRANSP
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« Experimentally, reduction in observed neutron rate cf. calculated (left) is
evidence of detrimental instabilities

« Magnitude of effect well-correlated with FI pressure gradient (right), as
expected from theory (see WW Heidbrink, PoP 15 (2008) 055501)

Keeling et al, Nucl. Fusion 55 (2015) 013021
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DBB - Fl pressure gradients
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In stage 1 upgrade, addition of extra off-axis beam has virtually
no impact on maximum FI pressure gradient

Radial FI pressure gradient is energy source for FI driven
instabilities (Alfven eigenmodes, fishbones...)

Addition of further on-axis source will lead to larger gradient >
larger instabilities

TUG meeting - 5th May 2017
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Initial engineering assessments

4 g
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Intermediate position scan
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... and adding these....

... results in these FI
pressure profiles.
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Assessing the Fl pressure gradient
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Along with expected mitigation of FI driven MHD this system allows for
flexibility in experiment design

Intermediate geometry beam allows for tailoring of non-inductive current
drive profile and heating profile

Intermediate beam has lower shine-through fraction than off-axis
beam-> more absorbed power, lower risk to in-vessel components.

Allows access to wider range of experimental parameter space than
beams with identical geometry.

Recently (last few weeks) had funding for stage 1 agreed (EUROfusion
+ EPSRC, not dependent on Brexit outcome) including DBB and
cryoplant



MAST Upgrade Stage 1

Assessment of TEXTOR
Beamline




A PINI and beamline is available from TEXTOR, possibly to use for
later stages of MAST-U

It is desirable to know:

— What effect this would have on the plasma in terms of increase
of heating power, Fl pressure, beam-driven current etc and

— How this compares to the addition of a PINI mounted in the
Double-Beam box

To give a first indication, comparisons are shown using Scenarios A1
and A2 of

1. Core Scope scenarios

CS with additional inclined-on-axis PINI
CS with additional off-axis PINI

CS with additional on-axis TEXTOR beam
CS with additional off-axis TEXTOR beam

o &~ b



TEXTOR beamline — Sc A1

Scenario

Parameter

lp 0.999 MA [0.999 MA |0.999 MA |0.999MA

By 0.785T 0.785T 0.785T 0.785T

Hog 1.02 0.901 1.00 0.990

to 489 ms |27.3ms 39.6 ms 40.4ms

P.bs 424 MW |8.30MW (5.63 MW |5.39MW

Pinj 5.00 MW [10.0MW |6.63 MW |6.63MW

Vour 0.231V 0.121V 0.181V 0.185V

(1) 0.692 0.683 0.675 0.660

Ao/ Grin/ Gos 1.64/ 2.33/2.14/ |1.46/1.46/ |1.85/1.85/
1.64/10.1 |10.6 10.2 10.3

dos 0.354 0.366 0.361 0.364

Ko 2.48 2.48 2.48 2.48

b, 7.31% 9.34% 8.22% 7.92%

b, 1.50 1.89 1.66 1.60

by thermal 2.51 2.74 2.70 2.64

foo 0.28 0.3 0.31 0.30

fusco 0.14 0.33 0.18 0.18
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K25 — Core scope

J73 - CS + DBB (1xoff, 1xon
inclined)

J85 — CS + TEXTOR on-axis
J86 — CS + TEXTOR off-axis

Slide 34



TEXTOR beamline — Sc A2

Scenario

Parameter
lp 0.999 MA |0.999MA  [0.999MA  [0.999MA
By 0.785T 0.785T 0.785T 0.785T
Hog 0.983 1.19 1.02 0.997
to 359ms |30.4 32.5ms 30.9ms
P 3.70 MW |7.47MW 5.36MW 4.69MW K26 B Core SCOpe

b . . . .

= J74 — CS + DBB (1xoff, 1xon
Pinj 5.00 MW |10.0MW 6.63MW 6.63MW . .

inclined)
Vurf 0.030VvV  |-0.088V 0.032Vv -0.035V 187 CS + TEXTOR )
- N-axi
(1) 0.931 0.781 0.900 0.804 J88 CS TEXTOR Off a .S
— + -
do/ 9/ Gos  10.801/0.8 [3.84/1.98/1|0.548/0.548(1.71/1.71/ Oft=axis
01/9.44 |1.9 /9.46 111

dgs 0.294 0.384 0.313 0.346
Kos 2.48 2.48 2.48 2.48
b, 9.31% 15.6% 10.3% 11.3%
b, 2.28 3.24 2.31 2.51
b, thermal 1.60 2.75 2.10 1.75
.. 0.16 0.28 0.23 0.18
fusco 0.66 1.1 0.60 0.91
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TEXTOR beamline — deposition and NBCD
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TEXTOR beamline — g-profile
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So... what's next?
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* In the near term (12-18 months) there are no
specific development needs, MAST team need
to concentrate on ensuring TRANSP production
runs can be executed

— Need to resurrect MAST-Chain-Control-
Centre (MC3, data preparation tool) to be
compatible with MAST-U data.

— Train more MC3/MAST-U TRANSP user

* One possible easy win is to make the fishbone
‘kick’ operator (as used by Mario Podesta) easily
available (if it already is then some instructions

for use would be welcome)



Medium Term (18-24/30 months) - Specific development
requirements likely to come out of first experience
operating MAST-U

Possibly inclusion of more synthetic diagnostics (e.g.
FILD)

Install MAST-U into OMFIT (needs local manpower but
assistance would be welcomed)

Use measured global neutron emission as
constraint in TRANSP/NUBEAM (e.g. to
adjust AFID/fishbone model)

— Still thinking about this, need to complete a
cross-calibration exercise FC/NC/FILD



