Neural-network models for pedestal & transport, and their possible inclusion in TRANSP

O. Meneghini 1 , T. Luda 2 , A. Tema¹, S.P. Smith¹, P.B. Snyder¹, G. Staebler¹, J. Candy¹, J.M. Park⁴, B. Grierson⁵, D.L. Green⁴, W. Elwasif⁴, J. Kinsey³, F.Poli⁵, $T.$ Luce¹

¹ General Atomics, San Diego, CA ²Politecnico di Torino, ITA ³CompX, CA ⁴Oak Ridge National Laboratory, TN ⁵Princeton Plasma Physics Laboratory, NJ

Presented at the 2017 TRANSP Users group Meeting Princeton NJ 4-5 May 2017

First principles iterative workflow robustly finds the self-consistent steady-state coupled solution

Iterate to convergence:

- *•* EPED1 provides pedestal boundary condition
	- Find highest pedestal based on PB and KBM stability conditions
- **TGYRO** is a flux-driven transport code
	- Given geometry, sources and sinks efficiently finds stationary profiles solution for density, temperature and momentum

GENERAL ATOMICS

Computationally expensive:

• Requires access to HPC and takes of order 1 day per simulation!

Neural network models accelerate the most time consuming aspects of core-pedestal simulation

Iterations nesting:

- **1** tight coupling in TGYRO: flux matching & pedestal
- 2 loose coupling in **OMFIT:** sources & equilibrium

TGYRO simulations with coupled core-pedestal NN models run in few seconds

GENERAL ATOMICS

NN captures both H-mode and Super H-mode pedestal roots of EPED1 model

The two sets of outputs are set to be equal when there is only one pedestal root

EPED1-NN model closely reproduces EPED1 predictions Trained across input parameter range of multiple devices

Pedestal height p_{ped} [kPa] 2.0 24 log_{10} Built database of $EPEDI - NN$ $\begin{array}{r} 10^2 \\ \begin{array}{c} 10 \\ \end{array} \\ 10^1 \end{array}$ 10^2 18 \sim 20,000 EPED1 runs 1.5 (2 million CPU hours) 12 1.0 **DIII-D:** 3,000 runs 6 $R^2 = 0.987$ 0.5 $10⁰$ 0 0.5 0.00 0.25 0.25 Pedestal width w_{ped} [$\Delta\% \psi$] **ITER: 15,000 runs** log_{10} $EPL1 - N$
 0.6
 0.4 CFETR: 1,200 runs 40 10^2 $\begin{bmatrix} 10^2 & \text{m} \\ \text{m} & \text{m} \\ 10^1 & \text{m} \end{bmatrix}$ 30 20 10 $R^2\,$ = 0. 964 $10⁰$ $\frac{0}{-0.25}$ 0.4 0.6 0.8 0.00 0.25 EPED1 **Relative Error IENERAL ATOMICS**

5 O. Meneghini - 2017 ITPA TC @ PPPL

 $\times 10^9$ speedup

KSTAR: 700 runs

JET: 200 runs

Leveraged OMFIT framework for experimental data access, spawn of simulations, database handling, and NN training

Infrastructure shared with other projects require handling databases

GENERAL ATOMICS

TGLF-NN neural network topology is more complex

23 dimensionless input parameters (for D,C plasma) to predict gyro-Bohm fluxes Q_e , Q_i , Γ_e , Π_i

r/a **normalized minor radius**
R/*a* Normalized major radius *R/a* Normalized major radius κ Elongation @*^r* Elongation shear Triangularity @*^r* Shafranov shift q^2 ∂q Safety factor ∂q Safety factor shear β_e Kinetic to magnetic pressure ratio
 ν_{ie}/ac_s Collision frequency v_{ie}/ac_s Collision frequency
 T_i/T_e lon to electron tem T_i/T_e Ion to electron temperature ratio n_D/n_e Deuterium to electron density rational n_D/n_e Deuterium to electron density ratio
 n_C/n_e Carbon to electron density ratio n_C/n_e Carbon to electron density ratio Z_{eff} Effective ion charge *Zeffective ion charge*

 a/L_{η} ^o $\overline{rB_{\rm{unit}}^2}$ @*p* $sign(I_p)$ *R* ω_{tor} $\frac{a}{c_s}$ $-sign(I_D)R$ $\frac{\omega_{\rm tor}}{\partial r}\frac{a}{c_{\rm s}}$ $-\operatorname{sign}(I_{p})\frac{r}{q}$ ∂ $V_{E\times B}$ *R* $\frac{R}{\partial r}$ $\frac{a}{c_{\rm s}}$

a/L_{Te} Electron temperature scale length a/L_{Ti} electron temperature scale length a/L_{Ti} Ion temperature scale length
 a/L_{Ti} Ion temperature scale length
Electron density scale length *a/Lne* Electron density scale length
 a/L_n D Deuterium density scale length **Deuterium density scale length Carbon density scale length**

Total pressure gradient

Parallel velocity

Parallel velocity gradient

 $E \times B$ velocity shear

GENERAL ATOMICS

 $r \frac{\partial \kappa}{\partial r}$

 $\frac{\partial R}{\partial r}$

*q*2*a*2 $\overline{r^2}$

Trained on 32,000 TGLF runs based on 24 DIII-D discharges probing ion energy transport (power and torque scans)

Raw TGLF fluxes are in qualitative good agreement with experimental power/particle/momentum balance fluxes

TGLF-NN model closely reproduces TGLF predictions

TGLF-NN regularization smooths out discontinuities in the original TGLF solution

Smoothness of fluxes affects convergence of transport solvers

Effort towards enabling routine/streamlined DIII-D corepedestal simulations capabilities (predict-first initiative)

TGYRO simulations with EPED1-NN and TGLF-NN allow routine stationary core-pedestal predictive simulations

Coupled core-pedestal predictions show relatively good agreement with the experiment

Spot-check with full EPED1 simulations shows that NN reproduces original model with high degree of accuracy

EPED1-NN calculation allows routine (indirect) validation of EPED model with experiment

We have established a pipeline for the development of a fidelity hierarchy of GA pedestal and transport models

EPED1-NN with TOQ profiles routine to generate pressure and density profiles consistent with full EPED1 model

TOQ profiles routine

• Translates pedestal width/height predictions to full density and pressure profiles like the ones that are used in the full EPED1 model

Both EPED1-NN and TGLF-NN have APIs for Python, FORTRAN, C to support:

- *•* OMFIT
- *•* Transport codes
- *•* Control systems

GENERAL ATOMICS

TGLF-NN can be easily used in codes that already use TGLF

Being part of TGLF facilitates

- *•* Integration
- *•* Validation & Verification

Start using TGLF-NN is easy:

- **1** Update TGLF to latest version
- 2 Build (with link to FANN library)
- ³ Switch TGLF NN MAX ERROR*>*0

EPED1-NN and TGLF-NN models enable routine predictive core-pedestal predictive transport simulations

- *•* EPED1-NN and TGLF-NN models have been developed
- Verified that they produce accurate results within training range
	- Models are being extended for wider parameters range
	- Arsene Tema master thesis at GA on these topics
- *•* Demonstrated that within TGYRO routine core-pedestal coupled simulations are possible by leveraging speed of neural network models
- *•* NN models have been designed to be easily included in other transport codes
- *•* Source code and NN models available on GitHub upon request

In addition to running TRANSP, synergy with OMFIT enables important cross-devices analyses/predictive capabilities

e.g. Multidimensional sensitivity and spectral flux analyses

In addition to running TRANSP, synergy with OMFIT enables important cross-devices analyses/predictive capabilities

e.g. Time-dependent kinetic equilibrium reconstructions

Open invitation to TRANSP developer to join the $3^{\rm rd}$ OMFIT code-camp: Aug 21st to 25st

A focused opportunity for developers to self-organize into small working groups to address outstanding issues and quickly bring new ideas to life

- *•* Serious coding
- *•* Fun environment

