Neural-network models for pedestal & transport, and their possible inclusion in TRANSP

O. Meneghini¹, T. Luda², A. Tema¹, S.P. Smith¹, P.B. Snyder¹, G. Staebler¹, J. Candy¹, J.M. Park⁴, B. Grierson⁵, D.L. Green⁴, W. Elwasif⁴, J. Kinsey³, F.Poli⁵, T. Luce¹

¹General Atomics, San Diego, CA
²Politecnico di Torino, ITA
³CompX, CA
⁴Oak Ridge National Laboratory, TN
⁵Princeton Plasma Physics Laboratory, NJ

Presented at the 2017 TRANSP Users group Meeting Princeton NJ 4-5 May 2017

First principles iterative workflow robustly finds the self-consistent steady-state coupled solution

Iterate to convergence:

- **EPED1** provides pedestal boundary condition
 - Find highest pedestal based on PB and KBM stability conditions
- **TGYRO** is a flux-driven transport code
 - Given geometry, sources and sinks efficiently finds stationary profiles solution for density, temperature and momentum

Computationally expensive:

 Requires access to HPC and takes of order 1 day per simulation!

Neural network models accelerate the most time consuming aspects of core-pedestal simulation

Iterations nesting:

- tight coupling in TGYRO: flux matching & pedestal
- 2 loose coupling in OMFIT: sources & equilibrium

TGYRO simulations with coupled core-pedestal NN models run in few seconds

NN captures both H-mode and Super H-mode pedestal roots of EPED1 model

The two sets of outputs are set to be equal when there is only one pedestal root

EPED1-NN model closely reproduces EPED1 predictions Trained across input parameter range of multiple devices

Leveraged OMFIT framework for experimental data access, spawn of simulations, database handling, and NN training

Infrastructure shared with other projects require handling databases

TGLF-NN neural network topology is more complex

23 dimensionless input parameters (for D,C plasma) to predict gyro-Bohm fluxes Q_e , Q_i , Γ_e , Π_i

r/aNormalized minor radius R/aNormalized major radius a/L_{Te} Elongation a/L_{Ti} $r \frac{\partial \kappa}{\partial r}$ Elonaation shear a/L_{ne} a/L_{nD} δ Trianaularity $\frac{\partial R}{\partial r}$ a/L_{nC} Shafranov shift Safety factor rB^2 unit Safety factor shear $sign(I_p)R\omega_{tor} \frac{a}{c}$ Kinetic to magnetic pressure ratio Be $-\text{sign}(I_{\text{D}})R\frac{\partial \omega}{\partial \omega}$ ν_{ie}/ac_s Collision frequency T_i/T_e Ion to electron temperature ratio n_D/n_e Deuterium to electron density ratio $-\operatorname{sign}(I_p)\frac{r}{a}$ n_C/n_e Carbon to electron density ratio Effective ion charge Z_{eff}

Electron temperature scale length lon temperature scale length Electron density scale length Deuterium density scale length Carbon density scale length Total pressure gradient ar $\frac{a}{c_s}$ Parallel velocity Parallel velocity gradient

 $E \times B$ velocity shear

O. Meneghini - 2017 ITPA TC @ PPPL

Trained on 32,000 TGLF runs based on 24 DIII-D discharges probing ion energy transport (power and torque scans)

Raw TGLF fluxes are in qualitative good agreement with experimental power/particle/momentum balance fluxes

TGLF-NN model closely reproduces TGLF predictions

O. Meneghini - 2017 ITPA TC @ PPPL

TGLF-NN regularization smooths out discontinuities in the original TGLF solution

Smoothness of fluxes affects convergence of transport solvers

Effort towards enabling routine/streamlined DIII-D corepedestal simulations capabilities (predict-first initiative)

TGYRO simulations with EPED1-NN and TGLF-NN allow routine stationary core-pedestal predictive simulations

Coupled core-pedestal predictions show relatively good agreement with the experiment

Spot-check with full EPED1 simulations shows that NN reproduces original model with high degree of accuracy

EPED1-NN calculation allows routine (indirect) validation of EPED model with experiment

O. Meneghini - 2017 ITPA TC @ PPPL

We have established a pipeline for the development of a fidelity hierarchy of GA pedestal and transport models

O. Meneghini - 2017 ITPA TC @ PPPL

EPED1-NN with TOQ profiles routine to generate pressure and density profiles consistent with full EPED1 model

TOQ profiles routine

 Translates pedestal width/height predictions to full density and pressure profiles like the ones that are used in the full EPED1 model Both EPED1-NN and TGLF-NN have APIs for Python, FORTRAN, C to support:

- OMFIT
- Transport codes
- Control systems

Being part of TGLF facilitates

- Integration
- Validation & Verification

Start using TGLF-NN is easy:

- Update TGLF to latest version
- Ø Build (with link to FANN library)
- 3 Switch TGLF_NN_MAX_ERROR>0

EPED1-NN and TGLF-NN models enable routine predictive core-pedestal predictive transport simulations

- EPED1-NN and TGLF-NN models have been developed
- Verified that they produce accurate results within training range
 - Models are being extended for wider parameters range
 - Arsene Tema master thesis at GA on these topics
- Demonstrated that within TGYRO routine core-pedestal coupled simulations are possible by leveraging speed of neural network models
- NN models have been designed to be easily included in other transport codes
- Source code and NN models available on GitHub upon request

In addition to running TRANSP, synergy with OMFIT enables important cross-devices analyses/predictive capabilities

e.g. Multidimensional sensitivity and spectral flux analyses

In addition to running TRANSP, synergy with OMFIT enables important cross-devices analyses/predictive capabilities

e.g. Time-dependent kinetic equilibrium reconstructions

Open invitation to TRANSP developer to join the 3^{rd} OMFIT code-camp: Aug 21st to 25st

A focused opportunity for developers to self-organize into small working groups to address outstanding issues and quickly bring new ideas to life

- Serious coding
- Fun environment

