Advances that Might Broaden the Usage of TRANSP*

T. RAFIQ and A.H. KRITZ

Lehigh University, Bethlehem, PA

TRANSP User's Group Meeting, May 4-5, 2017 PPPL, Princeton, NJ, USA

*This research is supported by the U.S. Department of Energy, Office of Science, under Award Numbers DE-SC0013977, DE-FG02-92ER54141 and by PPPL under task agreement S015425-F.

TRANSP for Predictive Integrated Simulations

- Although TRANSP was developed primarily as an Analysis Code it has always had some predictive capability as well
 - Predictive capability relies on introduction of reduced theory based models
 - Predictive studies involving ECH in PLT were carried out by a member of Lehigh group, in collaboration with D. McCune and other scientists at PPPL, in early 1980's, more than 30 years ago
 - A. H. Kritz et al., Study of the Effect of Localized ECH on Transport and Stability in Plasmas, AIP Conference Proceedings 129, 235 (1985)
 - Over the years, and particularly in the past 15 years, members of the Lehigh group have focused on extending the TRANSP predictive capability
- From 2007 to 2011 DOE, funded a national effort, the PTRANSP project, led by the Lehigh group, to advance the predictive capability of TRANSP
 - Focus on adding and extending the applicability of theory based models
 - Verification and validation of the code components was emphasized
 - Architectural modernizations improved the code modularity
- The improvements and addition of theory based models has led to a significant increase in the utilization of TRANSP
 - Results of numerous predictive studies carried out using the TRANSP code have appeared in many peer reviewed publications
- Essential that the reduced models, used in whole device modeling, continue to be improved in order that the reduced models accurately replicate the underlying basic plasma physics

Motivation for the Development of Reduced Models

- Use of integrated predictive simulations over the entire discharge period both in planning and interpreting results of experiments will result in more effective use of limited experimental facilities
 - Avoid costly design mistakes and facilitates the optimization and control of experimental scenarios
- Ability to understand the physics involved in fusion plasmas requires whole device modeling
 - Where all the relevant interactive physics is included
- Integrated predictive modeling, for the duration of the existence of the plasma, need to be carried out for time periods ranging from seconds to thousands of seconds
 - Not possible to carry out the required integrated modeling simulations using first principal physics
 - For example, thousands of processors, running for many days, are required to carry out a few microsecond simulation of plasma turbulence
- Important to develop reduced theory based models that can be utilized in whole device physics modeling
 - Compare simulation results with experimental data
 - Determine what works and what aspects of the model requires further theoretical development

Motivation for the Development of Microtearing Mode Model

- Two modules (microtrearing mode and interchange mode modules) are being developed at Lehigh which, when installed in TRANSP will extend the applicability of the TRANSP code
- Dependence of energy confinement time (τ_E) on the plasma collisionality (ν^*) is an important experimental discovery in the NSTX discharges
 - NSTX discharges show $\tau_E \propto 1/\nu^*$
- Preliminary studies of the collisionality effect on the anomalous thermal transport were carried out
 - Results for τ_E were found to be inconsistent with NSTX experimental results
 - Likelihood of missing electron thermal transport component
 - Parameter range for NSTX operation is such that microtearing modes (MTMs) can be unstable
 - MTMs are short wavelength ion scale electromagnetic instabilities driven by electron temperature gradient in a collisional plasma
 - Turbulent transport associated with unstable MTMs is currently not included in the Multi-mode transport model

Reduced Transport Model for MTMs

- Unified fluid/kinetic approach is used to derive NL dispersion relation
- Parallel current is calculated using nonlinear fluid equations of electron momentum, electron density, Maxwell equations, Ampere's law and quasi-neutrality condition
 - Iterative nonlinear approach is used to calculate perturbed distribution function, which in turn is used to calculate nonlinear parallel current and nonlinear dispersion relation
 - Influence of third order NL effects on a multi-wave system are considered
- Magnetic fluctuation strength and electron thermal diffusivity due to MTM are calculated
 - Saturated amplitude of the magnetic fluctuations are calculated utilizing numerically determined MTM eigenvalues in the nonlinear microtearing modes envelope equation
- Model developed for MTM electron thermal diffusivity includes
 - Collisionality, density and temperature gradient, magnetic curvature, electrostatic potential, and parallel dynamics
- Details of derivation of model:
 - T Rafiq, et al., Microtearing Modes in Tokamak Discharges, Phys. Plasmas 23, 062507 (2016)

Comparison Between Reduced Model and Gyrokinetic MTM Linear Growthrate and Frequency

- MTM linear growthrate and real frequency as function of $k_y \rho_s$ compared with gyrokinetic code GYRO MTM linear growthrate and real frequency
 - W. Guttenfelder et al. Phys Plasmas 19, 022506 (2012)
- The MTM model will be employed as a component of the Multi-Mode Transport model which has been used extensively in TRANSP predictive whole device integrated simulations
 - T. Rafiq et al., Fusion Power Production in ITER Baseline H-mode Scenarios, Phys of Plasmas, 22, 042511 (2015)
 - A.H. Kritz et al., Integrated Modeling for Prediction of Optimized ITER Performance, Nucl. Fusion 51, 123009 (2011)

Collisionality Dependence of MTM

- Maximum γ is found for moderate values of collision frequency
- Non monotonic dependence of γ on ν_{ei} is consistent with gyrokinetic simulations
 - γ decreases with decreasing v_{ei} consistent with the dependence on collisionality ($\tau_E \propto v^{-(0.8-0.95)}$) is observed in the NSTX discharges
 - S. Kaye et al., Nucl. Fusion 47, 499 (2007)
- Real frequency of MTM increases with collision frequency

Temperature Gradient Dependence of MTM for Different Values of Density Gradients

- Destabilizing effect of increasing temperature gradient, g_{Te} is illustrated
 - MTM instability threshold in g_{Te} is found to be dependent on density gradient
 - Threshold is found to be increasing and growthrate is found to be decreasing with increasing density gradient, g_{ne}
- Experimental g_{Te} is 2x larger than the inferred linear threshold in g_{Te}
- MTM growthrate increases rapidly above the g_{Te} threshold for small g_{ne}
- MTM real frequency increases with g_{Te} and with g_{ne}

Magnetic Fluctuation Dependence on β_e , Temperature Gradient and Density Gradient

- Saturated magnetic fluctuation, $\delta B/B$, clearly depends on β_e and on temperature and density gradients
 - Mixing length estimate $\frac{\delta B}{B} \approx \rho_e/L_{Te}$ used in previous MTM related publications is not capable of capturing these dependencies

Reduced Transport Model for Interchange Modes

- Interchange instability is similar to the Rayleigh-Taylor instability
 - Driving force for these modes is the pressure gradient
 - Exists when the Mercier criterion is violated as a consequence of pressure gradient across flux surfaces that have, an average, unfavorable curvature
- Interchange modes are unstable in high beta tokamak discharges
 - Consequently, as tokamaks operate in increasingly high beta regimes, it is important to include transport associated with interchange modes in simulations of the evolution of plasma discharges
- Currently, in TRANSP simulations employing the TGLF transport model, the TGLF model is turned off in plasma regions where the interchange instability criterion is violated and interchange modes are present
 - In the region where the TGLF transport model is turned off, anomalous transport is replaced by neoclassical transport with an arbitrarily multiplier
- For self-consistent predictive simulations, it is very important to develop a model for interchange modes, which can explain the enhancement of electron thermal transport in regions of the plasma where interchange modes are present
 - Research program at Lehigh includes plans to develop a module for describing transport associated with Interchange Modes

Anomalous Poloidal Momentum Transport Model

- JET experimental results show larger poloidal momentum transport than predicted using existing transport models
 - Experimental results contradict the assumption that the poloidal momentum transport is primarily neoclassical
 - In the region of internal transport barriers, the measured poloidal rotation velocity is approximately an order of magnitude larger than the neoclassical poloidal rotation velocity
- In plasmas with low toroidal rotation, the poloidal rotation will yield an important contribution to the radial electric field
 - The gradient of the radial electric field provides flow shear, which can suppress turbulence and result in larger plasma temperature
- Particularly important to understand poloidal momentum transport in plasmas which are expected to have low toroidal rotation such as ITER
 - Currently, turbulence driven poloidal momentum is not advanced in predictive simulations carried out using the TRANSP code
- Model for turbulence driven poloidal momentum transport will help understand the basis for the reduced levels of anomalous ion thermal transport observed in tokamaks
 IEHIG

Dynamic Model for H-Mode Pedestal Growth and ELM Cycles

The NTCC PEDESTAL module has been implemented in TRANSP

- Used to compute height and width of temperature pedestal at edge of Hmode discharges
- PEDESTAL module provides a predictive boundary condition for temperature profiles in TRANSP
 - Empirically based scaling model for H-mode pedestal currently used
 - T. Onjun, G. Bateman, A. Kritz, and G. Hammett, Models for Pedestal Temperature at the Edge of High Mode Plasmas in Tokamaks, Phys. of Plasmas, 9, 5018 (2002)
- It is important to have a predictive model for the pedestal
 - Since global confinement and core profiles depend on pedestal height
- Implementation of EPED code for boundary
- ELITE stability code to be installed in TRANSP
 - ELITE is particularly well suited for computing the onset and width of the MHD instabilities that trigger ELM crashes
- Install EPED (for boundary), ELITE (for stability), and ELM models

Model for Neoclassical Tearing Modes

- Magnetic islands driven by saturated neoclassical tearing modes(NTM) can produce increased radial transport and result in disruptive instabilities in tokamaks
- The ISLAND module or other module to compute NTM magnetic island widths is needed to be installed in TRANSP
 - NTCC ISLAND module computes multiple island widths in tokamaks with arbitrary cross section and beta
- Transport is enhanced across each island for self-consistency
 - Tested in BALDUR code but BALDUR no longer supported
 - C. Nguyen, G. Bateman and A.H. Kritz, Simulation of Saturated Tearing Modes in Tokamaks, Phys. Plasmas, 11, 3460 (2004)
 - F.D. Halpern, G. Bateman, A.H. Kritz and A.Y. Pankin, *The ISLAND Module for Computing Magnetic Island Widths in Tokamaks*, J. Plasma Physics 72, 1153-1157 (2006)
- Electron Cyclotron Current Drive needs to be implemented to model feedback stabilization of NTMs

TRANSP Verification and Validation

- Standardized collection of plasma state datasets should be used for cross code verification and TRANSP regression tests
 - Facilitate the connection between TRANSP and data made available by experimental groups
 - Time dependent plasma state datasets will facilitate reproducible simulations by different integrated modeling codes
- Detailed comparisons should be made with wide range of scans of tokamak experimental data
 - For H-mode and dynamic advanced tokamak scenario discharges
 - To test TGLF and Multi-Mode anomalous transport models
 - To test other components as well as transport in the context of selfconsistent predictive integrated simulations
- Documentation of archived TRANSP runs made available to community of TRANSP users

TRANSP Closed-loop Simulations

- Predictive simulation capability is critical for controls
 - -Validation of control-oriented models used for control design
 - -Controller test in closed-loop simulations before implementation
 - –Iterative design process (model improvement + control redesign)
- TRANSP currently runs in open loop
 - -Controllable inputs are preset before the simulated run
- To perform control simulations the loop must be closed
 - The controllable inputs must be updated by the feedback controller based on the state evolution of the simulated run
- Control needs
 - -Magnetic Control (Shape, Position, Total Current, ...)
 - Free boundary simulation capability
 - -Kinetic control (Current, Temperature, Pressure, Burn, Rotation, ...)
 - Transport simulation capability
 - -MHD Instability Control (NTMs, RWMs, ELMs, Sawteeth, Alfven, ...)
 - MHD simulation capability

Improve User Interface

- An Interface to the TRANSP code which facilitates the use of the code should have controls which avoids misuse of the code
 - Use of unphysical or incorrect variables results in meaningless output
- TRANSP Help Document is out of date and needs major revision
 - Unclear what are the limitations and use of many of the variables
 - Clearly indicate what modules: for example, heating, particle and current drive sources, anomalous and neoclassical transport models, stability packages, equilibrium packages, L-H transition, sawteeth, atomic physics
- Modern Plotting package based on python is needed for portability
- Support of the Code at NERSC
 - Cannot take advantage of parallelization that has been introduced
 - PT-Solver developed primarily for TGLF but TGLF can be run more efficiently at NERSC
- Choice of NCLASS, NEO, certain E×B shear models should be available for MMM when running PT-Solver
- Improve robustness of density evolution
- Complete testing of GENRAY/CQL3D

Summary

- Install interchange mode, microtearing mode, poloidal momentum transport, intrinsic rotation and pellet Injection modules
 - Need equations for evolution of poloidal momentum and impurity transport to be installed
 - Sometimes a newly installed module yields unexpected and incorrect results
 - Defensive programming techniques are required
 - Important to review, verify and validate all features in the code that relate to the module being implemented
 - Standards should be established by the community that must be satisfied both with regard to the reliability of the module as well as documentation before a new module is advertised as being available in the TRANSP code
- Dynamic model for H-mode pedestal growth and ELM cycles
 - Install or establish connection to MHD codes
 - Install EPED (for boundary), ELITE (for stability), and ELM models
- Improvements to simulation control
 - Options for automated feedback modification of source powers
- Standardized test problems to facilitate TRANSP regression testing
 - Simpler interface for use of each module and code
- TRANSP workshops at PPPL and other locations (perhaps APS or EPS meetings)
 as well as TRANSP User Group meetings