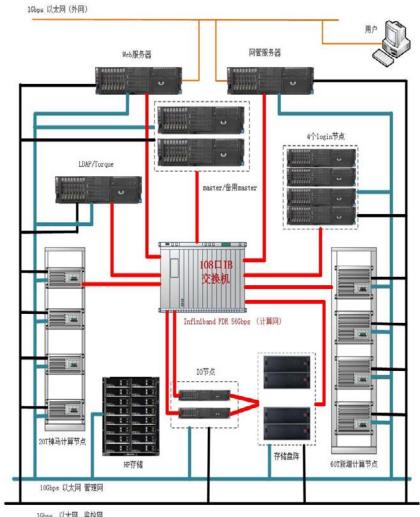


Status of TRANSP Code at ASIPP and the Future Plan

Siye Ding
On behalf of the TRANSP users at ASIPP

Institute of Plasma Physics, Chinese Academy of Sciences


Outline

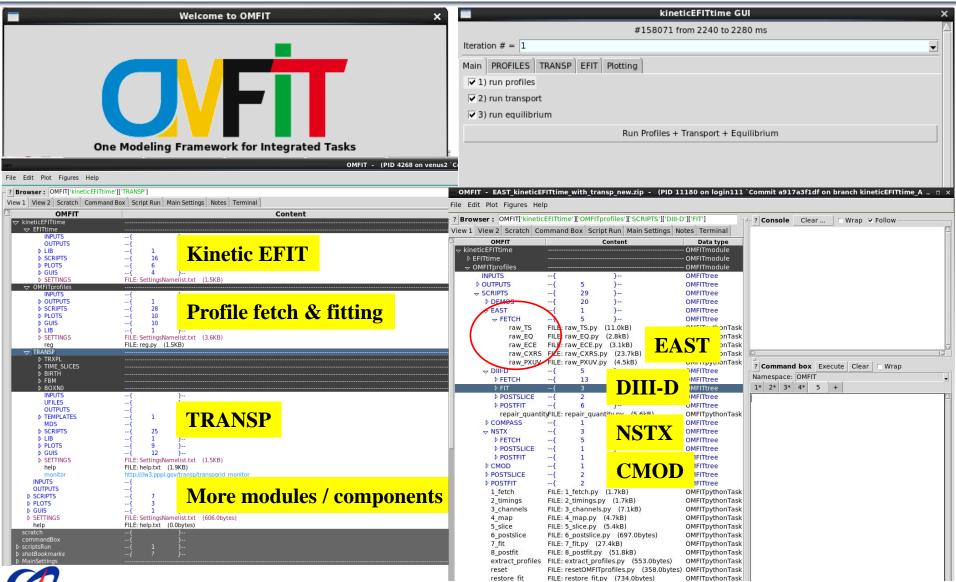
- Status of TRANSP code at ASIPP
 - Hardware --- Shenma cluster
 - TRANSP code and TRANSP users
- Application
- Future need and plan

Local Cluster 'Shenma' is Recently Upgraded

- 129 computing nodes, 2688 cores, 80 TFlops theoretical computing capacity
- 180 TB lustre parallel file storage system
- About 300 registered users and ~100 active users
- 220,000 jobs and more than 10 million CPU-hours in 2016
 - In support of EAST, CFETR, ...
- Scientific codes on SHENMA
 - TRANSP, IMFIT, GYRO, BOUT++, M3D, SOLPS, ...

Status of TRANSP Code and Users on Shenma

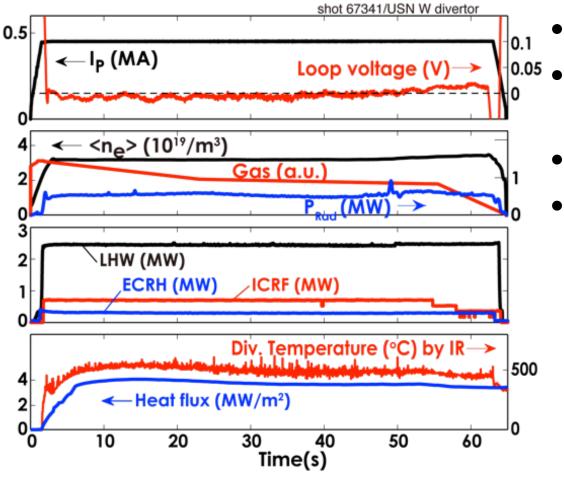
- Three versions
 - Public: daily use
 - Develop: receive update from PPPL
 - Backup: backup
- Support MPI and multiple-user jobs
- Update TRANSP source code via PPPL SVN
- Efforts on user promotion
 - User training + Q&A
 - TRANSP manual in Chinese
- 47 registered users from domestic and international institutes / universities
 - From 33 users in 2015
- Total jobs / CPU-hours since 2015
 - **2810 / 96212**
 - 30% higher


Two Levels of Users Strategy

Common TRANSP user

- In 'transp' group
- Public version only
- Full access of TRANSP computational capacity
- No authorization of TRANSP source code access
- TRANSP administrator
 - In 'transpadmin' group, supreme to common user
 - Update and compile source code
 - Manage the three versions
- Data access
 - Users have their own \$RESULTDIR
 - Each user can read results from all users
 - Each user can only write/delete his/her own results

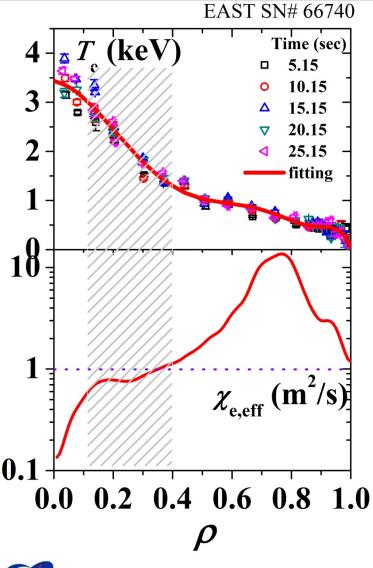
The OMFIT Project with TRANSP is Being Localized on Shenma for EAST



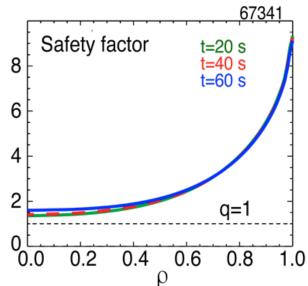
Outline

- Status of TRANSP code at ASIPP
 - Hardware --- SHENMA cluster
 - TRANSP code and TRANSP users
- Application
- Future need and plan

Experiments on EAST Achieve First H-mode Operation >60 sec with ITER-like Actively Cooled Tungsten Divertor


- H-mode phase up to 61 sec
- Fully non-inductive operation
- Pure RF heating
- Good confinement
 - H₉₈~1.1

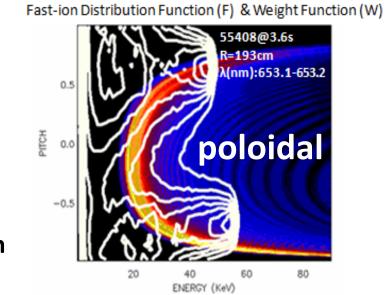
B. Wan, OV/2-2, 26th IAEA FEC, 2016
A. M. Garofalo, EX/4-3, 26th IAEA FEC, 2016
S. Ding, invited, 58th APS, 2016

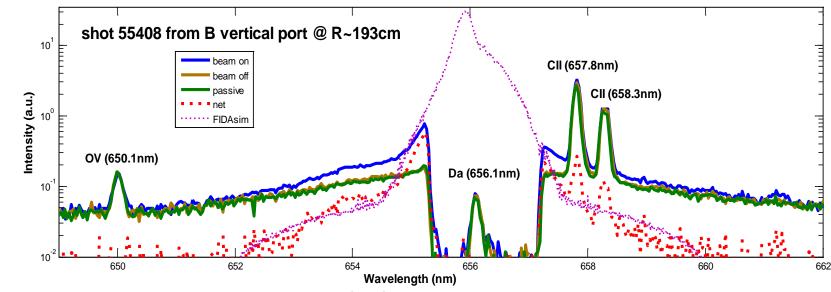

Core Confinement Is Improved with ITB Feature in T_e Channel in the Fully Non-Inductive Long Pulse on EAST

- Peaked T_e profile and improved confinement are stationary
- Power balance analysis by TRANSP shows a significantly reduced χ_e in plasma core region
- Core T_e profile meets the ITB criterion

$$-\rho_{Te}^*(max)=0.02>\rho_{ITB}^*\sim0.014$$

G. Tresset, Nucl. Fusion, 42(2002)520




Broaden q-profile to expand ITB radius and increase confinement

Validation of FIDA Measurements during EAST Neutral-Beam Heated Plasmas

- New s-FIDA system is validated in a MHDquiescent plasmas
 - Beam ions are neoclassical
 - Beam modulation: 100 ms with 10% duty cycle
- Kinetic equilibrium at 3.6 sec are used in TRANSP and FIDAsim
- TRANSP produces the fast ion distribution functions
- The simulated spectrums calculated in FIDAsim are consistent with the measurement

Outline

- Status of TRANSP code at ASIPP
 - Hardware --- SHENMA cluster
 - TRANSP code and TRANSP users
- Application
- Future need and plan

Future Need and Plan

- The capability of LHCD simulation in dual-antenna dual-frequency scenario (Crucial!)
 - LSC → GENRAY+CQL3D
- The interaction between RF and neutral beam induced fast ions
- OMFIT project with TRANSP for EAST
- Control algorithms for EAST
 - EAST colleague Dr. Yong Guo may be involved
- Between-shot analysis (BEAST)

Summary

- TRANSP provides good opportunity for EAST colleagues to study H&CD, transport, EP, etc.
- Numbers of TRANSP users and TRANSP usage is kept growing in EAST
- The request of improving LHCD simulation capability is urgent
- Further collaboration may happen in two aspects
 - Control algorithms
 - Between-shot analysis

