

Supported by

NSTX-U Disruption Prediction, Avoidance, and Mitigation Working Group – Initial Meeting

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

S. A. Sabbagh and R. Raman

Department of Applied Physics, Columbia University, New York, NY University of Washington, Seattle, WA

NSTX-U DPAM Working Group Meeting

January 30th, 2015

PPPL

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science

Initial meeting of the Disruption Prediction, Avoidance, and Mitigation (DPAM) Working Group - OUTLINE

Mission statement and Scope

- Recent History
- Present Charges
- Structure and Organization
- Initial Approach and Summary of Elements
- Open Discussion

DPAM WG – Mission Statement and Scope

Mission statement

Satisfy gaps in understanding prediction, avoidance, and mitigation of disruptions in tokamaks, applying this knowledge to move toward acceptable levels of disruption frequency/severity using quantified metrics

Scope

- Location: Initiate and base the study at NSTX-U, expand to a national program and international collaboration
- <u>Timescale</u>: Multi-year effort, planning/executing experiments of various approaches (leveraging the 5 NSTX-U Year Plan) to reduce plasma disruptivity/severity at high performance
- Breadth: High-level focus on quantified mission goal, with detailed physics areas expected to expand/evolve within the group, soliciting research input/efforts from new collaborations as needed

Recent history regarding the DPAM Working Group

- DPAM is a top priority research element (one of two) identified by recent FESAC Strategic Planning Panel
 - We championed this effort in July 2014 FESAC talk / white paper (S.A. Sabbagh, et al.)
 - Talk and white paper available at: http://nstx.pppl.gov/DragNDrop/Working_Groups/DPAM/Repository

NSTX-U 5 Year Plan committee recommendation supporting this effort

- NSTX-U should lead a multi-machine prediction/avoidance effort
- For NSTX-U, we are a "working group" will also have a wider scope
 - Initial charges for NSTX-U created for the group
 - Roger Raman deputy lead focus on mitigation

<u>Near 100% disruption avoidance is an urgent</u> <u>need for ITER, FNSF, and future tokamaks</u>

- This is the new "grand challenge" in tokamak stability research
 - Can be done! (JET: < 4% disruptions w/C wall, < 10% w/ITER-like wall)</p>
 - ITER disruption rate: < 1 2% (energy load, halo current); << 1% (runaways)</p>
 - Disruption prediction, avoidance, and mitigation (<u>PAM</u>) is multi-faceted, best addressed by focused, national effort (multiple devices/institutions)
 - Serves FES strategic planning charge; pervades 3 of 5 ReNeW themes
- <u>Strategic plan summary</u>: Utilize and expand upon successes in stability and control research – synergize elements
 - Add focused, incremental support for US research programs to show near 100% disruption PAM success using quantifiable figures of merit
 Leverage upgraded facilities with heightened focus on disruption PAM
- Leverage US university expertise, international collaborations
 a JET high power operation KSTAR long-pulse operation above idea
 - e.g. JET high power operation, KSTAR long-pulse operation above ideal MHD stability limits, US university scientists, post-docs, and students

A relatively modest incremental investment will greatly enhance quantifiable progress

DPAM WG - Present NSTX-U Charges

Physics

- □ What are leading causes of disruptions in NSTX & initial NSTX-U ops?
- How can tokamaks practically minimize disruption frequency and severity? (initial focus on NSTX-U)
- What prerequisites / tools are needed to prepare NSTX-U to operate a large # of sequential shot-seconds (say 1-5 shot minutes) without a disruption?

Communication of results

- How will NSTX-U interface to the upcoming (~June) FES workshops, and address the FESAC/FES Tier 1 issue of "Transients" generally?
 - In which disruption research areas can NSTX-U make leading contributions?
 - What are the associated long-term resource needs from NSTX-U?
- What are the leading/highest priority NSTX-U contributions to JRT-16?
 - What are the required resources during FY15-16 to support JRT-16?

Working Group

- Focused physics research, cross-cutting NSTX-U TSGs or SGs
- Does not allocate run time rather, advises SGs and TSGs regarding XP priority and needs related to the group's mission

Communication of results / group discussion

- Specific DPAM WG meetings will be held with appropriate frequency
- To reduce the number of meetings, DPAM WG discussions on specific science elements will often be conducted in coordination with NSTX-U Macroscopic Stability TSG (or other TSGs)
- Interface to USBPO through established channels
- Interface to ITPA through MHD Stability Group, et al., and established joint experiment / analysis groups (e.g. MDC-19, 21, 22, etc.)

Aid research efficiency and collaboration

Communicate researcher points of contact to avoid duplication of effort

DPAM WG Initial Approach to Disruption Prediction and Avoidance – related physics Elements

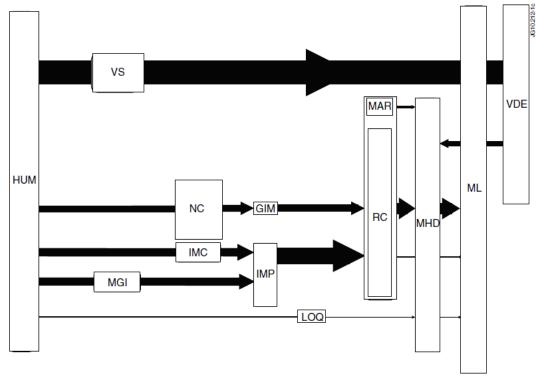
Initial Approach

- Define disruption criteria, characterization, severity
- Define a characterization for disruption causes, with related quantitative evaluations
 - Start by adopting a formalization similar to JET, altered as appropriate for NSTX-U, which includes connections between categorized elements

Elements

- Significant research efforts presently exist (and/or are part of the NSTX-U 5 Year Plan) that cover these elements
 - Engage, utilize, communicate these efforts related to DPAM mission
- As progress is made, identify important research elements not being covered and solicit additional effort in these areas (from within group, and/or from new collaborations), including potential hardware needs

Example of disruption physics elements interconnected to describe paths toward disruption


Elements

Provide a logical and quantifiable set of components in the disruption chain, with underlying physics

Connections

- Shows interrelations of the elements, arrow thickness showing relative probability of path
- Can have multiple inputs / outputs

Example: Disruption Elements and Connections Diagram (JET) VS

P.C. de Vries *et al.*, Nucl. Fusion **51**, 053018 (2011)

(Incomplete) List of physics elements tied to disruption prediction, avoidance (highlighting individual involvement)

Impurity control (NC)	Abbreviations:
bolometry-triggered shutdown (SPG); "tailoring" radiation-induced TM onset (LD, DG)	JWB: Jack Berkery
change plasma operational state / excite ELMs, etc. (TBD – perhaps JC)	AB: Amitava Bhattacharjee
Greenwald limit (GWL)	DB: Devon Battaglia
density/power feedback, etc. (DB)	MDB: Dan Boyer
Locked TM (LTM)	JC: John Canik
TM onset and stabilization conditions, locking thresholds (JKP,RLH,ZW)	LD: Luis Delgado-Aparicio
TM entrainment (YSP)	DG: Dave Gates
Error Field Correction (EFC)	SPG: Stefan Gerhardt
 NSTX-U EF assessment and correction optimization (CM,SPG) 	MJ: Mike Jaworski
NSTX-U EF multi-mode correction (SAS, YSP, EK)	EK: Egemen Kolemen
Current ramp-up (IPR)	RLH: Rob La Haye JEM: Jon Menard
Active aux. power / CD alteration to change q (MDB, SPG)	CM: Clayton Myers
Shape control issues (SC)	JKP: Jong-Kyu Park
Active alteration of squareness, triangularity, elongation – RFA sensor (SPG,MDB)	YSP: Young-Seok Park
Transport barrier formation (ITB)	RR: Roger Raman
• Active global parameter, V_{ϕ} , etc. alteration techniques (SAS,JWB,EK)	SAS: Steve Sabbagh
H-L mode back-transition (HLB)	KT: Kevin Tritz
• Active global parameter, V_{ϕ} , etc. alteration techniques (SAS,JWB,EK)	ZW: Zhirui Wang
Approaching vertical instability (VSC)	TBD: (To be decided)
 Plasma shape change, etc. (SPG, MDB) 	
Resistive wall mode (RWM)	Interest from Theory
\Box Active global parameter, V _b , etc. alteration techniques (SAS,JWB)	Amitava
 Active multi-mode control (SAS,YSP,KT) 	
Ideal wall mode (IWM)	Bhattacharjee, Allen
• Active global parameter, V_{ϕ} , etc. alteration techniques (JEM)	Boozer, Dylan
Internal kink/Ballooning mode (IKB)	Brennan, Bill Tang
• Active global parameter, V_{ϕ} , etc. alteration techniques (SAS,JWB)	have requested
 Active multi-mode control (SAS, YSP, KT)	involvement

(D) NSTX-U

Disruption mitigation research can also be used to quantify disruption severity reduction

Power handling and shutdown

(red text: individuals involved)

- Heat / radiation / plasma parameter variation criteria for handoff from normal operation to disruption mitigation (SPG)
- Heat / radiation load characteristics (including asymmetry) in NSTX-U (RR, ORNL (JC?))
- □ MGI characteristics in NSTX-U, incl. acceleration of gas penetration to core plasma (RR)
- □ Innovative techniques for mass deposition, incl. electromagnetic particle injection (RR)
- □ MGI effectiveness as a function of poloidal position of injection (RR)
- Influence of wall conditions on disruptions and their mitigation (SPG)
- Innovative first wall applications, including sacrificial limiters and liquid metal PFC (SPG,MJ?)

Halo currents

- Halo current characteristics during NSTX-U disruptions (SPG,CM,AB)
- Active control of disrupting plasma and halo currents (SPG,CM,SAS)
- Runaways
 - Criteria for runaway electron generation (SPG)

<u>Joint Research Target for FY16 (JRT16)</u> focused on disruption mitigation (with prediction/avoidance elements)

DPAM is a grand challenge problem – help make the solution a reality

Status

NSTX-U DPAM research efforts have already started among individuals and small groups on the NSTX-U Team

Action Items

- Please contact Steve and Roger (sabbagh@pppl.gov; rraman@pppl.gov) to join and contribute to the group
- Open discussion (now) regarding the DPAM WG as summarized in this talk
 - Please send further constructive comments to Steve and Roger by email as desired

Next Step

Meeting to discuss DPAM physics elements related to NSTX and initial NSTX-U operation (focus on 5 Year Plan) (to be announced)

Important Links for NSTX-U DPAM Working Group

General

- DPAM Working Group meetings folder area
 - http://nstx.pppl.gov/DragNDrop/Working_Groups/DPAM/2015
- General repository file area
 - http://nstx.pppl.gov/DragNDrop/Working_Groups/DPAM/Repository

NSTX-U specific

- NSTX-U 5 Year Plan
 - http://nstx-u.pppl.gov/five-year-plan/five-year-plan-2014-18
- NSTX-U diagnostics
 - http://nstx-u.pppl.gov/diagnostics
- NSTX-U DPAM group summary page
 - http://nstx-u.pppl.gov/program/working-groups/disruption-pam

Supporting slides follow

ITER Disruptivity Requirements (Lehnen 2013)

Disruption Mitigation System requirements

DT phase (requirements gradually increasing from H/He phase)

	Energy load on divertor target	Energy load on first wall (VDEs)	EM load due to halo currents (VDEs)	Runaway electrons
Disruption rate (Avoidance)	\leq 5 %	≤ 1-2 %	≤ 1-2 %	<< 1 %
Prediction success	≥ 95 %	≥ 98 %	\ge 98 %	~ 100 %
Mitigation	≤ 1/10	≤ 1/10	≤ 1/2	≤ 2 MA

Compatible with "response time" of \leq 20ms?

minimum requirement substantial melting still likely

 Iter
 M. Lehnen, ITPA-MHD Topical Group Meeting, Culham 2013
 IDM: ITER_D_DSNCCZ
 15

 © 2013, ITER Organization
 15