

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Update on Activities and Action Items for PFCR Working Group M.L. Reinke

PFCR-WG B-252 6/14/17

Goals of this Meeting

 present analysis from PFCR-MEMO-005 on impact of faceting on OBD heat flux (Reinke)

• discuss PFC 'scenarios' currently under consideration

review in-progress MEMOs and open ACTION ITEMS
– Gerhardt: time evolving equilibrium:

Effect of OBD Faceting

- OBD surface is not axisymmetric
 - 48 flat plates

$$-\theta_{surf} = 21.5^{\circ}$$

Effect of OBD Faceting

- OBD surface is not axisymmetric
 - 48 flat plates

$$-\theta_{surf} = 21.5^{\circ}$$

- non-axisymmetry due to 'BBQ rails'
 - upcoming metrology
- PFCR-WG asked by engineering to look into how faceting impacts surface heat flux

Define Geometry & Calculate $\hat{B} \cdot \hat{n}$

Examine Limiting Cases

$$\widehat{B} \cdot \widehat{n} = -\frac{\sin\theta_{surf}}{\sqrt{1+b_{rat}^2}} \left[\sin(\theta_{surf} + \theta_{pol}) \cos\phi - b_{rat} \sin\phi + \frac{\cos(\theta_{surf} + \theta_{pol})}{\tan\theta_{surf}} \right]$$

- define $b_{rat} = B_{\phi}/B_P$
- for $\theta_{surf} = 0$, $|\hat{B} \cdot \hat{n}| = \cos \theta_{pol} / \sqrt{1 + b_{rat}} = \cos \theta_{pol} \sin \alpha$

•
$$\theta_{surf} = \frac{\pi}{2}, \theta_{pol} = 0 \left(\widehat{B} \cdot \widehat{n}\right) / \left(\widehat{B} \cdot \widehat{n}\right)_{\phi=0} = \cos \phi (1 - \frac{\tan \phi}{\tan \alpha})$$

– indicates that something unexpected will happen for $\phi > \alpha$

Ex: Vertical Plate w/ 96 Facets

NSTX-U OBD EF ~ 2.0 for Small Field Line Angles

•
$$b_{rat} = B_{\phi}/B_P$$
 and for $\theta_{pol} = 0$, $b_{rat} = 15$, $\alpha = 3.8^{\circ} b_{rat} = 55$, $\alpha = 1.05^{\circ}$

NSTX-U

PFCR-WG Action Item Update (6/14/2017)

Implications of Analysis

- are there experimental measurements to confirm this?
- the impact of faceting needs to be added to other features that are impacting heat peak heat flux

- impact of 'BBQ Rail' non-axisymmery? Additional fish-scaling?

- can reduce the impact by increasing the # of facets and/or shaping surface to be non-planar (this is what C-Mod did)
 - this must be added to cost of other activities to make the OBD-R1 and/or OBD-R2 'high heat flux handling'
 - could we defer such an upgrade and make the OBD good enough to handle 'spillover' from an improved IBDH?

PFC "Scenarios"

- based on choosing paths for various regions of divertor
 - <u>'qualify'</u>: calculate and/or mechanically test what limits the presently implemented tiles can take
 - <u>'modest improvement'</u>: keep overall tile envelope/design but remove and replace (new graphite, change 't-bar', pins, etc.), targeting 3.5-4.0 MW/m² while meeting halo current spec.
 - <u>'full design'</u>: major new design, optimizing for high heat flux requirements (small cubes, possibly carbon-carbon composites)
 - may need to realign the BBQ rails for the outboard divertor
- cost (money, FTE, personnel types) for each option was estimated, collected to form 'scenarios'
 - exercise shows we need many more engineers than we have

PFC Scenarios And Normalized Costs

Scenario	CSFW	IBDH	IBDV	CS-A	OBD-R1	OBD-R2	OBD-R3/5	OBD Align	Weeks	Cost
0 : do everything	Full	Yes	1.00	1.00						
1: full halo + critical surfaces	Improve	Full	Full	Improve	Full	Full	Improve	No	1.00	0.76
J: full halo + optimized high- δ	Qualify	Full	Full	Improve	Improve	Improve	Improve	No	0.94	0.55
X: full halo + optimized horiz. target	Qualify	Full	Improve	Improve	Improve	Improve	Improve	No	0.94	0.52
2: full halo + improvements	Qualify	Improve	Improve	Improve	Improve	Improve	Improve	No	0.84	0.45
3: partial halo + some improve.	Qualify	Improve	Qualify	Improve	Improve	Qualify	Qualify	No	0.84	0.29

- duration (weeks) and cost (\$\$) normalized to 'do everything'
 - talk w/ Stefan or Jon regarding details of absolute numbers
 - working idea would be to bring J,X,2, or 3 up to 'Scenario 1' in the future
- all ask for somewhere between 0.7-1.4 FTE of physics
- no monitoring systems included, but its on spreadsheet

Review On-Going Work

- for people present, please summarize what's being worked on and progress being made
 - -<u>MEMOs</u>
 - -<u>ACTION ITEMS</u>

PFC Requirements Working Group Charges

- 1. define which (additional) parameters need to be specified in an updated requirements document for the NSTX-U PFCs
- 2. facilitate generation of updated requirements utilizing:
 - a) available reduced models, empirical scalings, boundary simulations
 - b) ultimately, a validated model for specifying heat loads to all plasma facing components for arbitrary NSTX-U scenarios
- 3. in preparation for operations, develop:
 - a) instrumentation plan for intra and inter-shot PFC monitoring
 - b) a reduced model for heat loading for pre-shot planning
 - c) guidance on how to best integrate monitoring with operations
 - d) control, diagnostic requirements for real-time heat-flux control
- 4. work closely with engineers and analysts to develop and implement requirements

http://nstx-u.pppl.gov/program/working-groups/pfc-requirements-working-group

