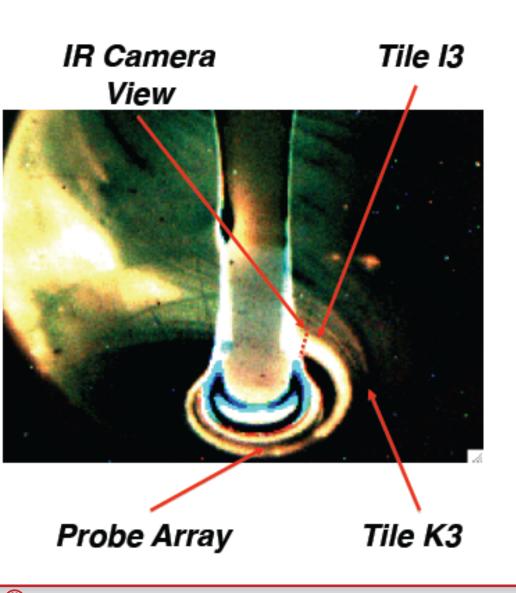


Supported by

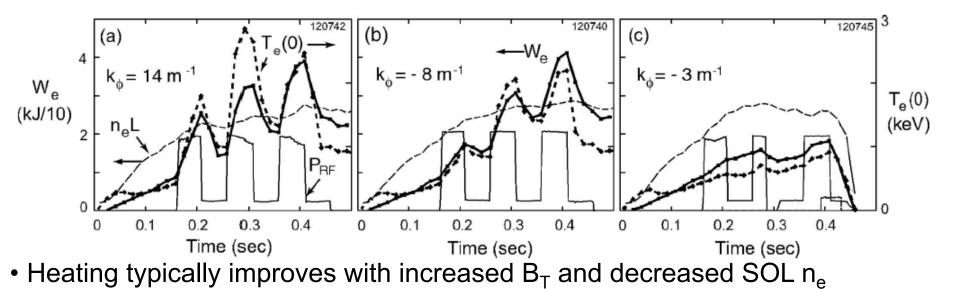


Characterizing the SOL Losses of HHFW Power in H-Mode Plasmas

R. J. Perkins, N. Bertelli, J. C. Hosea, D. R. Smith, G. Taylor, J. Caughman, C. Lau

Wave Heating and Current Drive TSG XP 1510 TSG Review July 22, 2015

Main Goal: Characterize (and minimize) RF Spirals and other SOL losses



- Bright and hot spirals form on upper & lower divertor during RF
 - Heat flux up to 2 MW/m² (for 1.8 MW coupled P_{RF})
- Previous studies complicated by spatial extent and intensity variation along length of spiral
- Other loss mechanisms (PDI) could be important too

HHFW heating improves with higher B_T, higher antenna phase, and lower n_{SOL}

- Increasing phasing improves both central $\rm T_e$ and stored electron energy

> He discharges, $B_T = 5.5 \text{ kG}$, $I_p = 0.72 \text{ MA}$, $P_{RF} = 2 \text{ MW}$

 Suggests that poor heating efficiency results when fast-wave cutoff is too close to antenna

Three new/upgraded diagnostics will answer many of these questions

- Wide-angle IR camera: view most of lower divertor and most of RF spiral
 - Determine total power deposited underneath lower RF spiral and if spiral losses account for majority of lost HHFW (e.g. is PDI important?)
 - Determine variation of heat flux along length along the spiral
- Radial arrays of RF Langmuir probes: on both the upper and lower divertor at Bay I, near most intense part of spiral.
 - Direct measurement of RF rectification in spiral.
 - Estimate the peak heat flux in the spiral due to RF rectification for comparison to IR camera measurement from the same location
- Upgraded SOL Reflectometer: compatible with higher NSTC-U fields
 - Obtain SOL density profiles to determine location of RH cutoff.
 - SOL density profiles will be used in RF models

NSTX NSTX-U Research Forum

Characterizing SOL Losses of HHFW Power in H-Mode Plasmas

We want to study two H-mode scenarios during this first campaign

NBI + RF H-Modes

- Apply RF pulse to a ~ 2 MW NBI Hmode plasma
- Deuterium discharges
 - Larger SOL density
- Larger outer gap
 - Lighter loading
- Might be more suitable to Li wall conditioning

RF-Only H-modes

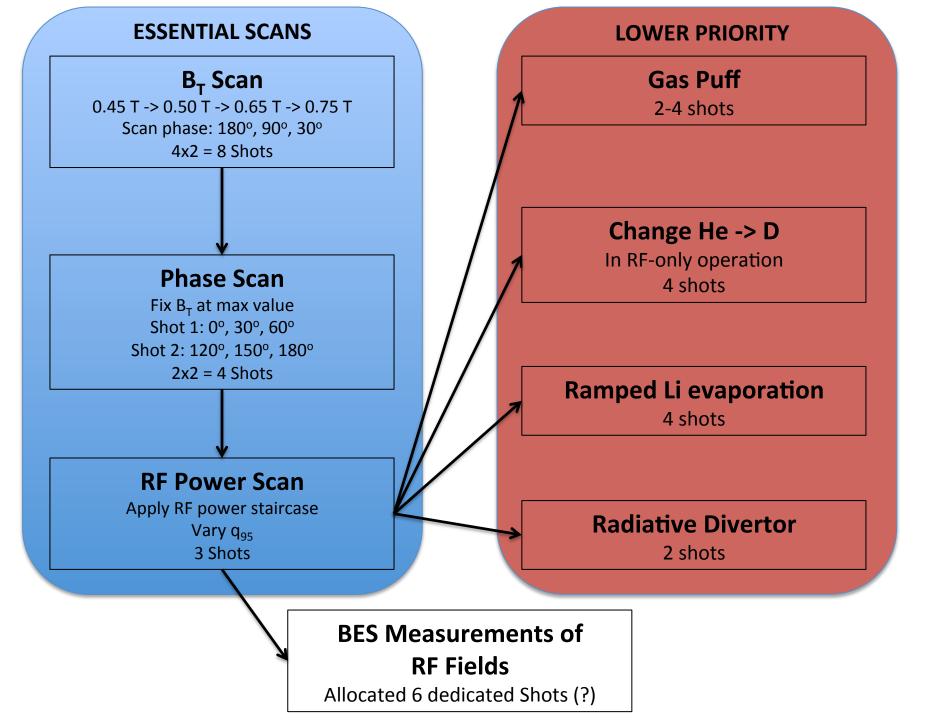
- Can be run at smaller gap
 - Better coupling
- Can use either He or D
 - He: Lower recycling -> lower SOL density
 - He: better control of plasma
 - D: higher n_{SOL} should give higher losses
- RF-only in He might be good choice for boronized conditions

Could run either scenario in first HHFW run Will probably be decided based on conditioning

We want to study two H-mode scenarios during this first campaign

NBI + RF H-Modes

- Apply RF pulse to a ~ 2 MW NBI Hmode plasma
- Deuterium discharges
 - Larger SOL density
- Larger outer gap
 - Lighter loading
- Might be more suitable to Li wall conditioning


RF-Only H-modes

- Can be run at smaller gap
 - Better coupling
- Can use either He or D
 - He: Lower recycling -> lower SOL density
 - He: better control of plasma
 - D: higher n_{SOL} should give higher losses
- RF-only in He might be good choice
 for boronized conditions

That being said, helium RF-only shots are more attractive for a pre-lithium run

Shot allocation for first run (Weeks 5-8)

- XP 1510 runtime allocation for weeks 5-8
 - 0.65 days of "Priority 1" time
 - plus 0.25 days of "Priority 2" time
- Assume 24 shots per day (20 minutes per shot)
 - 15 Priority 1 shots + 6 Priority 2 shots
- Furthemore, assume 50% shot failure in shot plan
 - Due to either machine hiccups or RF trips
- Dave Smith's experiment "BES Measurements of RF Fields" was allocated 0.25 days ~ 6 shots of dedicated time
 - Will run BES in piggyback during NBI + RF shots anyway
 - Might even use diagnostic beam blips in RF-only

