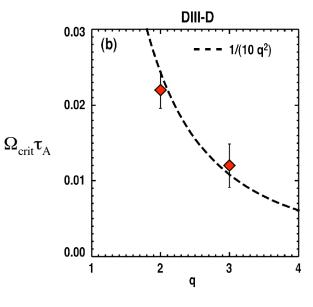
XP512 NSTX/DIII-D RWM Similarity

A. Sontag, S. Sabbagh, H. Reimerdes, A. Garofalo, W. Zhu, J. Menard, K. Shaing, E. Strait, R. La Haye, Y. Liu

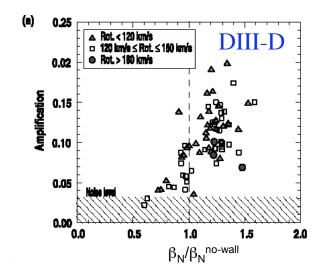

XP Review 5/2/2005

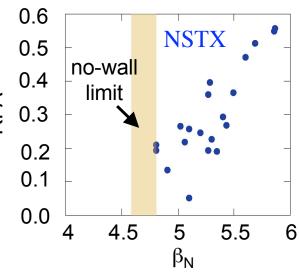
Similarity XP to Explore Aspect Ratio Effects on RWM Stability (1)

- Mode structure & dynamics
 - higher n coupling observed in NSTX
 - MSE constraint on NSTX profiles
 - increases accuracy of mode structure determination
- $T_{NTV} = R \frac{\pi^{1/2} p_i}{v_{ti}} \left(\Omega_{\phi} \Omega_{\text{mod } e}\right) \varepsilon^2 n^2 q \left(\frac{\delta B_r^{mn}}{B_{\phi}}\right)^2$

- rotation damping dynamics
 - dependent on perturbed B-field structure
 - neoclassical toroidal viscosity (NTV) used to determine torque
 - cross-machine comparison aids in NTV validation
- Critical rotation
 - $\Omega_{\rm crit} \propto \alpha/{\rm q}^2$ in both machines
 - coefficient α scales with ε
 - \square α = 0.25 in NSTX
 - α = 0.1 in DIII-D
 - consistent with theoretical predictions
 - $\hfill \square$ magnetic braking will allow similar determination of $\Omega_{\rm crit}$

Similarity XP to Explore Aspect Ratio Effects on RWM Stability (2)

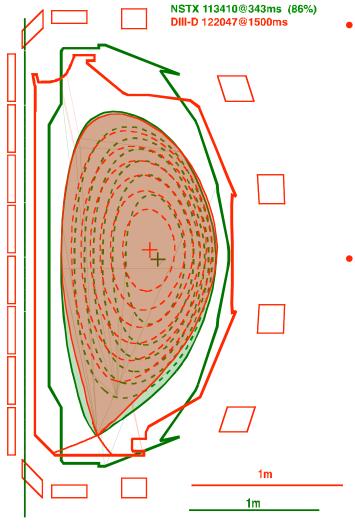

- Resonant field amplification (RFA)
 - theoretical prediction by Fizpatrick Aydemir:


$$\frac{\left|\psi_{plasma}\right|}{\left|\psi_{ext}\right|} = \left(\frac{1-md}{1+md}\right)^{1/2} \frac{2md}{\left\{\left[\hat{\Omega}_{\phi}^{2} + \kappa(1-md)\right]^{2} + \left(v_{*}\hat{\Omega}_{\phi}\right)^{2}\right\}^{1/2}}$$

- single mode model:
 - adequate in NSTX with n > 1 coupling?

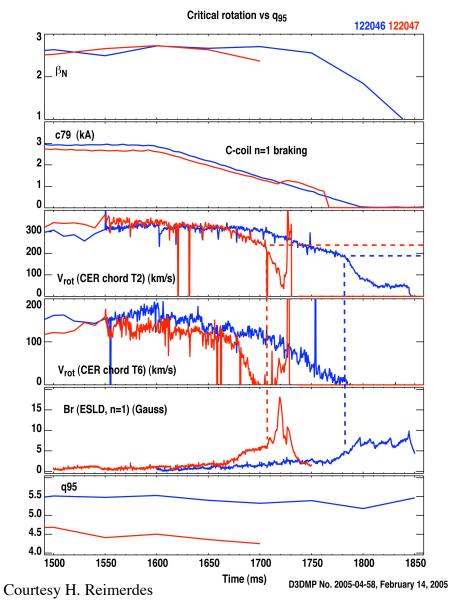
$$RFA = \alpha \frac{1 + \gamma_0 \tau_w}{i\omega_{ext} \tau_w - \gamma_0 \tau_w}$$

- Critical rotation dependence on v_A and C_S
 - v_A and C_s determine dissipation magnitude
 - $C_s \propto [T_e/m_i]^{1/2}$
 - $v_A = B/[4\pi n_i m_i]^{1/2}$
 - examine dependence on A, q



DIII-D / NSTX Boundary already well matched

(Sontag, Reimerdes, Garofalo, Sabbagh, Strait, LaHaye, Okabayashi, Buttery, etc.)



- NSTX shape matched during DIII-D run
 - need high-β_N NSTX discharge with correct shape
 - $\kappa = 2-2.1$
 - $\delta_{upper} \le 0.35$, $\delta_{lower} \le 0.6$
 - $\ell_i \sim 0.8$
 - DIII-D EFITs for shape matching
- Experience from XP501 will provide guidance
 - field amplitudes
 - controlled rotation damping
 - MHD spectroscopy
 - coil waveforms
 - pulse shapes for braking
 - frequencies for spectroscopy

DIII-D Run Completed with Good Results

- Two 1/2 day run periods on DIII-D
 - day 1: 13 shots with NSTX similar shape
 - day 2: 8 shots with NSTX similar shape
 - MHD spectroscopy
 - rotation braking to induce RWM
- q₉₅ & β scans performed
- Higher-κ than previously accessed in similar shape
 - \sim $\kappa \leq 2.1$
 - easier to match in highperformance NSTX discharges

XP512 Shot List

<u>Task</u>		Number of Shots
1)	Establish DIII-D similar shot - RWM stable • Ip = 1.0 MA, LSN , $\kappa \le 2.1$, $\delta_{lower} \le 0.6$, $\beta_{N} > \beta_{N \text{ no-wall}}$ • need period with no large tearing modes	5
2)	Scaling of Ω_{crit} with A apply DC n=1 braking pulse in steps to induce RWM use XP501 experience for field magnitude/timing $\Delta t_{step} \ge 5\tau_{wall}$ if possible ($\Delta t_{step} \ge 2\tau_{wall}$ is minimum)	2
	 adjust beams to scan β_N proximity to β limits will determine adjustments 	3
	scan q_{95} by varying I_p - attempt to match q_{95} from DIII-D run $(3.6 \le q_{95} \le 5.4)$	4
	repeat braking with $\beta_N < \beta_{N \text{ no-wall}}$ - reduce NBI power to stay below no-wall limit	1

XP512 Shot List (cont.)

Number of Shots <u>Task</u> 3) RWM growth rate & rotation frequency dependence on A & β_N scan rotation frequency of applied field 6 - take guidance from XP501 - scan frequency around expected max. response repeat at frequencies with max. response with $\beta_N < \beta_{N \text{ no-wall}}$ apply static field to observe RFA dependence on β_N - use DC pulse lengths short enough and field magnitudes small enough to avoid destabilizing RWM - $\Omega_{\rm crit}$ studies to provide guidance - adjust NBI power to vary β_N Ω_{crit} dependence on V_A and C_s 3) adjust B_t and I_p together to maintain const. q 5 - apply n = 1 braking pulse to induce RWM - try to maintain high temperature - stop when field too low to control MHD and maintain high T & β 31 total

Duration and Required / Desired Diagnostics

- XP could be completed in 1.5 run days (one long run day)
 - leveraging experience from XP501
- Required
 - Magnetics for equilibrium reconstruction
 - Internal RWM sensors
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - Diamagnetic loop
- Desired
 - USXR diagnostic at two toroidal positions
 - MSE
 - Toroidal Mirnov array

