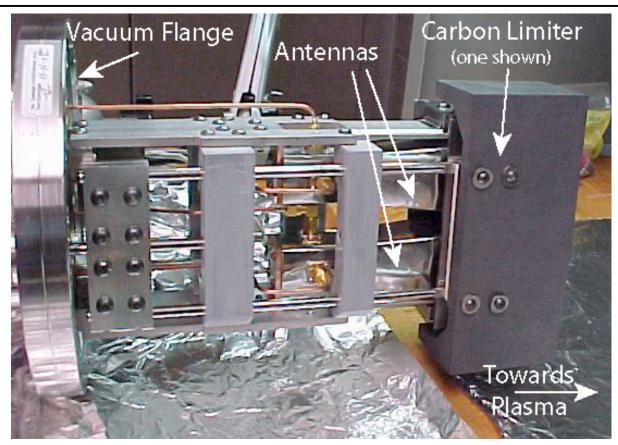
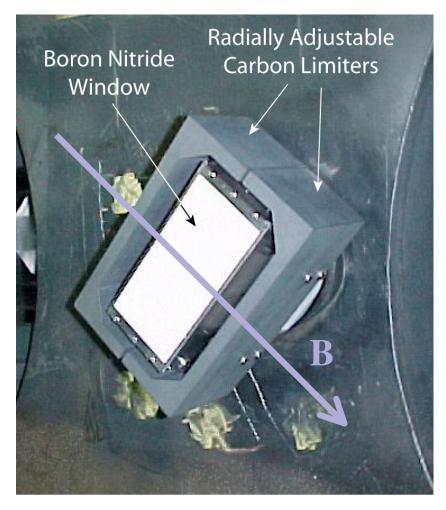
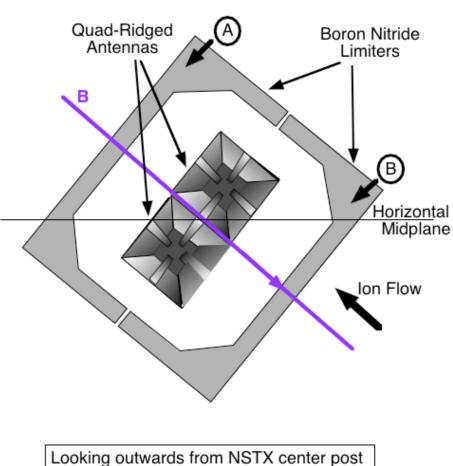

XP 519: Thermal Electron Bernstein Wave Conversion to X-Mode

G. Taylor, P. Efthimion, S. Kubota, W. Peebles


- EBW antenna with local, radially adjustable carbon limiter installed on NSTX
- Two goals for this experiment:
 - Demonstrate measurement of T_e
 - Demonstrate B-X conversion ≥ 80%
- Last years run of this experiment (XP404) showed that the local limiter was ineffective - insufficient electron density measured at antenna

EBW to X-Mode Conversion Efficiency (C_{BX}) Very Sensitive to L_n at Resonant Upper Hybrid Layer


• Experiment on NSTX using HHFW antenna tiles shortened L_n and increased C_{BX} from $\sim 10\%$ to $\sim 40\%$


Two 8-18 GHz Quad-ridged Horn Antennas with Radially Adjustable Limiters Installed Near NSTX Bay I/J Midplane

- Antenna includes two carbon limiters to control L_n :
 - Each limiter radially adjustable to be 0-3 cm in front of horns
 - Local gas feed to adjust density in front of horns
 - O-mode reflectometer to measure L_n in front of EBW antennas (UCLA)

Antenna Tilted to Align Ridges for X-Mode and O-Mode

Run Plan

- Dedicated run time required only after gas injector at B-X
 EBW antenna has been fully commissioned:
 - Need UCLA O-mode reflectometry to measure scrape off density profile routinely
 - Need remote operation of the radially adjustable carbon limiters
- XP requires about 16-18 plasma shots

Run Plan - II

L_n scan for maximum B-X conversion, dwell EBW radiometer at frequency ~ 17 GHz (EBW from near axis):

- Establish OH plasma using setup from 113544 (I_p = 800 kA, B_o = 4.0 kG) [2-4 shots]:
 - Need ~150 ms I_p flattop, no n_e glitches, well-controlled shape
 - Begin with both limiters A and B retracted ($\Delta_A \& \Delta_B = 0$ cm)
 - Repeat until reproducible & without significant MHD
 - Acquire MPTS $T_e(R)$ and $n_e(R)$ profile data during I_p flattop
 - Measure L_n at the B-X conversion layer and EBW T_{rad}/T_e on separate shots
- Move limiter B so that $\Delta_B = 1$, 2 and 3 cm (6 shots):
 - Two shots at each position
 - Limiter B should have the greatest influence on L_n since it is on the ion flow side

Run Plan - III

L_n scan for maximum B-X conversion (cont.):

- Leave $\Delta_A = 3$, move limiter B so that $\Delta_B = 2$, 1 and 0 cm:
 - Two shots at each position (6 shots)

Run EBW radiometer in swept frequency mode (12-18 GHz) at maximum B-X conversion:

• Set Δ_A and Δ_B for maximum B-X conversion (2 shots)