XP520: Divertor regimes and divertor detachment in NBI-heated plasmas

V. A. Soukhanovskii

Lawrence Livermore National Laboratory and NSTX Research Team

> XP Review Meeting 11 March 2005 Princeton, NJ

-XLSN

Motivation for XP 520

- Need to develop heat flux mitigation techniques for highperformance long pulse NSTX plasmas (strike point sweep, radiative divertor)
- Need to characterize divertor regimes to understand complex interplay of parallel transport, atomic physics, plasma surface interactions
- Do ST magnetic geometry effects matter, or is it just the NSTX open divertor effect?
- Determine divertor regime mapping in the operational (P_{in} , n_e) space
- Obtain divertor data for ITPA participation

Scope of XP 520

• Aim of XP is a specific result - use two techniques to change density and edge rad. power to obtain outer target detachment

- Useful edge database as by-product
- Density limit scan as by-product
- First use of neon injection in non-trace quantities useful "radiative mantle" experience
- Much improved diagnostic set for detachment studies in FY05:

tile Langmuir probes, $D_{\alpha,} D_{\gamma,} C$ III divertor cameras, high *n* Balmer series Stark broadening measurements (divertor T_e , n_e)

• XP 520 is a good candidate for reversed B_t campaign

FY'04 status

- XP-438 "Divertor regimes and divertor detachment in NSTX" was approved in FY04. Ran 8 shots.
- Due to TF coil safety restrictions, ran $B_t=0.3$ T, $I_p=0.6$ MA short plasmas, suffered from IREs
- Reduced the scope of XP to a crude D_2 injection scan from 40 to 120 Torr I / s
- Despite P_{in} =2.5 MW (2 NBI sources) managed to stay in L-mode through most of shots
- Did not observe outer divertor detachment
- Obtained experience with multiple LGDIS injectors

Divertor detachment experiment started

- Used PF2L shape, 4 MW NBI L-mode at $B_t = 0.3$ T
- Injected D_2 in LFS midplane and PFZ regions at 20 120 Torr I / s
- Concluded inner divertor detachment from D_{γ}/D_{α} ratio
- Inner divertor detachment threshold in $< n_e >$, P_{in} is low
- No sign of volume recombination (D_{γ}/ D_{α} low, no D_{γ}) in outer divertor even at 120 Torr I / s, n_e= 4 x 10¹⁹ m⁻³

Plasma shapes obtained with PF2L and PF1B divertor coils dominate LSN operational space

FY'06

q_{II} profiles are different in PF2L and PF1B shapes

In PF2L plasmas:

- Heat flux increases non-linearly with P_{in}
- q_{in}/q_{out} = 2-3
- Heat flux equilibration time $\tau_{eq} \sim 100 \text{ ms}$
- Power accountability: up to 70 % of
- $\mathsf{P}_{\mathsf{NBI}}$ measured in divertor
- Divertor heat flux independent of gas
- injection location

V. A. Soukhanovskii, XP 520 Review, 03/11/2005

Inner divertor is cold / detached in PF1B shots

Appearance of Stark broadened high n Balmer series lines indicate:

- Volume recombination
- Apparently high n_e , n_0 , low T_e
- Possibly optically thick

- Similar divertor behavior in L- and H-mode plasmas with $P_{NBI} < 6$ MW.
- Inner divertor is cold, often detached
- Heat flux q < 1 MW/m²
- Sign of detachment: observed volume recombination (D_{γ}/D_{α} ratio increases), P_{rad} increase

Outer divertor is in linear and high recy. regime

- Outer divertor is always attached, heat flux q < 10 MW/m^2
- Outer divertor is in sheath-limited and high-recycle regime
- Uncertainty in LCFS position undermines analysis:
 - MPTS midplane $T_e = 5 40 \text{ eV} (5 15 \text{ eV} \text{ or } 20 40 \text{ eV}?)$
 - Fast probe midplane $T_e = 10 40 \text{ eV}$
 - SOL collisionality $v^* = 0.5 100$ (mostly 10 60)
- Divertor $T_e = 5 40 \text{ eV}$
- If midplane $T_e = 5 20$ eV then the very weak dT_e/dx_{\parallel} raises questions about heat flux measurements, e-i partition and the heat transport mechanism
 - Carbon radiation zone is 10 eV 1
- Difficult experimental issue

LP outer divertor data - C. Bush (ORNL)

Experiment plan

- Use PF2L LSN discharge with $I_{p} = 0.8$ MA, $B_{t}=0.45$ T, 2 NBI src, LFS fueling from Injector # 2 (for density control), LDGIS, Injector # 3 for neon
- High flow diagnostic injector (Bay B) will be used for edge turbulence measurements in "radiative mantle" plasmas (R. Maqueda)
- Setup an L-mode NBI-heated discharge, Elongation κ = 2.0, Triangularity δ = 0.5 (2 shots)
- Inject D₂ in increasing quantities from Injector # 2: 40-100 Torr I / s (5 shots)
- Attempt to raise density further by adding LDGIS, Injector 1 and/or CS injector (10-15 shots)
- Use an intermediate density $(3-5 \times 10^{19} \text{ m}^{-3})$ good shot from above and add injections of neon in increasing quantities (1 20 Torr I / s, duration 50 200 ms) to obtain $P_{rad} / P_{in} = 0.5$ (10-15 shots)
- SGI may be used instead of Inj # 2 if adequate results come from XP516

Future work

- Reversed B_t experiments role of drifts and flows
- ST geometry effects on commonly observed divertor regimes
- Detachment in DN divertor
- Detachment in Helium plasmas
- Correlation of turbulence in inboard and outboard SOL and divertor detachment
- Divertor detachment in HHFW-heated plasmas
- Radiative divertor scenarios in long high power density Hmode plasmas

• Slides from APS 2004 poster

Analyze SOL / divertor properties in ST plasmas

• NSTX has made significant progress toward high performance plasmas:

 τ_{pulse} = several τ_E , β_T up to 40 %, routine H-mode access

- Analyze ST effects in SOL / divertor as well as divertor geometry effects
- Document SOL / divertor conditions, compare to tokamaks, 2D codes
- Develop radiative divertor regime compatible with high performance H-mode plasmas
- Analyze SOL / divertor properties in plasmas with two common magnetic equilibria:
 - PF2L shape H-mode physics (access, threshold), transport
 - **PF1B** shape high β high performance long pulse, transport and H-mode

• NSTX has developed sustained high elongation high triangularity H-mode plasmas scenarios (D. Gates oral CO3.002)

Operation defined endownAll shots 2002-3All shots 2002-3All shots 2001<math>d = 20 10 10 1.4 1.6 1.8 2.0 2.2 2.4 κ

• Higher elongation leads to longer pulse length (1)

higher) higher β broader

SOL / divertor diagnostics improved in FY'04

IRTV: two Indigo Alpha 160 x 128 pixel microbolometer cameras, 7-13 μm range, 30 ms frame rate

• D_{α} , D_{γ} , C III filtered cameras: four Dalsa 1 x 2048 pixel CCDs, filter FWHM 10-15 A, frame rate 0.2 - 1 ms

• **Neutral pressure gauges**: four microion gauges on top and at midplane, two Penning gauges in lower and upper divertor, time response 5-10 ms

• High-resolution spectrometer ("VIPS 2"): ARC Spectro-Pro 500i, three input fibers (channels), time response 15-30 ms, FWHM > 0.6 A

• **Bolometry**: midplane (AXUV radiometer array), divertor - ASDEX-type four channel bolometer, time response 20 ms

• Langmuir probes: midplane - fast probe, tile

LPs - I_{sat} , T_e measurements

ST effects in SOL and divertor may lead to different physics

- High SOL mirror ratio $M = |B_{min}| / |B_{max}|$ affects connection length $L_{//}$, fraction of trapped particles *f*, etc
- Large flux expansion ratio $f = \frac{(B_{\theta}/B)_u}{(B_{\pi}/B)}$
 - Heat and particle in-out asymmetries
 - Parallel transport, divertor regimes
- Compact divertor divertor volume, PFC area.
- Toroidicity effects drifts (not addressed here)
- Shapes are challenging for 2D code mesh generation


```
Tokamak
(safety factor q = 4)
```

Spherical To (safety factor q =

Divertor P_{rad} is similar in PF2L and PF1B shapes

- Analyses is based on plasma emissivity estimate from divertor bolometers
- Effective divertor volume in PF2L shape is 3-5 higher than in PF1B
- Accurate comparison and power accounting is only possible through 2D modeling
- Power balance studies in NSTX S. F. Paul et. al., Poster JP1.010

Divertor D_{α} in-out asymmetry is high

- Recycling in PF2L and PF1B occurs in different div. regions
- Asymmetry is weakly dependent on R_{Xpt}
- Both inner and outer D_{α} brightness are line-av. n_{e} dependent

Divertor in-out asymmetries

- Heat flux asymmetry always $q_{out}/q_{in} > 1$, consistent with
 - SOL area factor: $A_{out} = (4.0 4.5) A_{in}$
 - Magnetic flux expansion factor (mid/div): $f_{in} > f_{out}$
- D_{α} asymmetry (particle flux / recycling) is observed through most of op. space
 - Density and power dependent
 - Not always correlated with volume recombination onset
 - Complex interplay of cold dense detached plasma and diagnostic geometry effects?
 - Analysis in progress to address radiation opacity effects
 - (A. Pigarov et. al. Poster JP1.027)

Inner divertor cold / detached in PF2L shots

- 1 NBI src L-mode
- Inner divertor detached at $\langle n_e \rangle$ = 2.5-3 x 10¹⁹ m⁻³

Stark broadening of Balmer lines yelds high n_e

- Do not observe photorecombination continuum edge probably due to high core bremstralung background and spectrometer/fiber sensitivity fall-off
- FWHM increases with *n*, Voigt line profile shape
- Inglis-Teller limit for n=11 yeilds n_e =10¹⁵ cm⁻³ (too high!)
- Analysis with CRETIN in progress

Flat T_e, n_e in outer midplane SOL in PF2L shots

UEDGE detachment space is close to the observed

- H-mode LSN equilibrium used
- UEDGE diffusive transport model
- Impurities included
- Outer n_e , T_e profiles matched, D α and IRTV not matched
- For guiding purposes only

2PM suggests detachment of inner divertor

$$2 n_t T_t = n_u T_u$$

$$T_u^{7/2} = T_t^{7/2} + \frac{7}{2} \frac{q_{||} L_c}{\kappa_0}$$

$$q_{||} = \gamma n_t T_t c_{St}$$

P. C. Stangeby, *The plasma boundary of Magnetic Fusion Devices*, IoP Publishing, Bristol & Philadelphia, 2000

SOL response to ELMs

• Attached inner divertor D_{α} always lags behind outer divertor D_{α} by 200-400 μ s

• Analysis in progress - look at many ELM arrival times at several locations (), develop self-consistent picture (n_e , n_i , v^* , L_{II})

• ELM Type I propagates from outboard at $C_s = (T_{e,ped} + T_{i,ped})^{1/2}/m_i$

Divertor response to ELMs

• In ELMy H-modes:

- Inner divertor cold and dense, often detached

- Outer divertor always attached
- Type I ELM heat pulse burns through inner leg plasma and causes transient inner leg reattachment
- Type III, V ELMs do not change divertor state
- Need to correlate fast C III, D_{α} data with divertor and midplane probes

Summary

• Present analysis of heat and recycling fluxes in L- and H-mode plasmas suggests that the inner divertor operates in a detached state in $n_e > 2 - 3 \times 10^{19}$ m⁻³ (0.2 < $n_e/n_G < 0.9$), $P_{in} = 2 - 6$ MW LSN PF2L and PF1B plasmas, whereas the outer divertor is always attached

• The outer divertor is in the sheath-limited (linear) and flux-limited (high recy. regime) regime

• Inner divertor transiently re-attaches when Type I and Type III ELMs reach the divertor, and shows resiliency to Type V (small) ELMs

 Stationary heat loads up to 10 MW/m² measured in outer divertor, and about 1 MW/m² in inner divertor

• High in-out D_{α} asymmetry is observed as a result of complex interplay of proximity of vertical CS wall, cold dense recombining plasmas and opacity effects

- High neutral pressure is measured in divertor, divertor compression is 5 -10
- MARFEs are often observed on inboard side

NSTX reference data

NSTX eng. and plasma parameters

 $R = 0.85~m,~a = 0.67~m,~A = R/a > 1.27~P_{\rm NBI} < 7~MW,~P_{\rm HHFW} < 6~MW$

NSTX fueling

• Gas injection: low field side (LFS, top + side) and high field side (HFS, midplane + shoulder). D_2 , He, injected at S = 20 - 150 Torr I /s.

- Neutral beam injection system: three beams, 80 100 keV, 6 MW, fueling rate: S < 4 Torr I / s
- Supersonic gas injection (near future) S = 30 150 Torr I / s

NSTX wall conditioning

- Between shots He GDC, He conditioning plasmas
- TMB and Plasma TMB

NSTX pumping

- Turbomolecular pump (3400 l / s)
- NBI cryopump (50000 I / s, in NBI plasmas only)
- Conditioned walls

PFC

- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack
- Thickness 1" and 2"

	Aspect ratio A	1.27
	Elongation κ	2.5
	Triangularity δ	0.8
	Major radius R ₀	0.85m
	Plasma Current I _p	1.5MA
	Toroidal Field B _{T0}	0.6T
	Pulse Length	1s
	Auxiliary heating:	
	NBI (100kV)	7 MW
	RF (30MHz)	6 MW
0	Central temperature	1 – 3 keV

