XP524:Active control of rotation damping in RWM plasmas

Overall Goal

 Use new resistive wall mode (RWM) stabilization coils for a broader study of the physics of plasma and mode rotation damping

Specific Studies

- Rotation damping physics due to applied field (plasma rotation alteration)
 - Apply n=1 3 DC field perturbation below / above $\beta_{N \text{ nowall}}$
 - Damp plasma rotation in a controlled approach to Ω_{crit}
 - Test
 - neoclassical toroidal viscosity (NTV) theory
 - rotation damping due to resonant field amplification (RFA)
- Rotation damping during RWM activity (RWM rotation alteration)
 - Apply n=1 3 rotating field f_{field} ~ f_{RWM}
 - Unlock and rotate RWM, suppress RWM growth, and allow a greater duration to study the rotation damping during RWM

- RWM passively stabilized most of the time without error field correction
 - Applied δB from RWM coil used for rotation braking alone
- Vary the applied field to create a controlled scan of δB

- δB is dependent on RFA (a function of β_N)
 - $\beta_{\rm N}$ scan
- Scan *n* number
 - *n*=1, 3 can be run on same day
 - n=2 best run on second day

XP524 could be completed in 1.5 days (1)

<u>*n*=1, 3</u>

1) Rotation damping physics due to applied field (plasma rotation alteration)	16
vary applied current, zero rotation of applied field, attempt to avoid NTM to clearly	
distinguish RWM, $\beta_N/\beta_{N \text{ no-wall}} < 1$ and $\beta_N/\beta_{N \text{ no-wall}} > 1$	
A. 1-1.5 NBI sources $(\beta_N/\beta_{N \text{ po-wall}} < 1)$	
i. Control shot without tearing mode (no applied field)	1
ii. Apply n=1 constant DC current to alter plasma rotation	2
3(or more)-step current scan, 50ms each step, anti-phase with static error field	
iii. Apply n=3 constant DC current to alter plasma rotation	2
3(or more)-step current scan, 50ms each step, in/anti-phase with static error field	
B. 2-3 NBI sources $(\beta_N/\beta_N p_{0-Wall} > 1)$	
i. Longest possible pulse (reference target in XP501)	1
no applied field	
ii. Apply n=1 DC current to alter plasma rotation	2
3(or more)-step current scan, 50ms each step, up to the field causing	
RWM growth, anti-phase with static error field	
iii. Apply n=3 DC current to alter plasma rotation	2
3(or more)-step current scan, 50ms each step, up to the field causing	
RWM growth, in/anti-phase with static error field	
iv. Apply $n=1$ DC field in pulses at different β_N to study plasma rotation damping	3
due to RFA	
pre-programmed 100ms pulses at β_{N} values not acquired in above step ii)	
v. Apply <i>n</i> =3 DC field in pulses at different β_N to study plasma rotation damping	3
due to RFA	
pre-programmed 100ms pulses at β_N values not acquired in above step iii)	

XP524 could be completed in 1.5 days (2)

<i>n</i> =1, 3	
2) Rotation damping during RWM activity (RWM rotation alteration)	14
Preprogrammed rotating applied field, $\beta_N / \beta_{N \text{ no-wall}} > 1$	
A. <i>n</i> =1 rotating applied field	
i. Apply rotating field $(f_{\text{field}} = f_{\text{RWM}})$ when β_{N} exceeds $\beta_{\text{N no-wall}}$	2
try to unlock RWM, f_{RWM} =100 Hz (or observed f_{RWM} from part 1)	
vary applied field current based on step 1)-B)	0
II. Vary applied field frequency in steps	3
$T_{\text{field}} = 100 \text{Hz} \rightarrow T_{\text{field}} = 120 \text{Hz} \rightarrow T_{\text{field}} = 140 \text{Hz} (10 \text{ periods each})$	
$I_{\text{field}} = 100 \Pi Z \rightarrow I_{\text{field}} = 80 \Pi Z \rightarrow I_{\text{field}} = 80 \Pi Z (10 \text{ periods each})$	
(frequency ranges need to be revised based on the guidance of XP-501)	
iii Test low applied field frequency	2
$f_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_$	
B. <i>n</i> =3 Rotating applied field	
B. Apply rotating field ($f_{\text{field}} = f_{\text{BMM}}$) when β_{N} exceeds β_{N} as well	2
try to unlock RWM, $f_{RWM} = 100$ Hz (or observed f_{RWM} from part 1)	
vary applied field current based on step 1)-B)	
C. Vary applied field frequency in steps	3
$f_{\text{field}} = 100 \text{Hz} \rightarrow f_{\text{field}} = 120 \text{Hz} \rightarrow f_{\text{field}} = 140 \text{Hz}$ (10 periods each)	
$f_{\text{field}} = 100 \text{Hz} \rightarrow f_{\text{field}} = 80 \text{Hz} \rightarrow f_{\text{field}} = 60 \text{Hz} (10 \text{ periods each})$	
t_{field} =-60Hz \rightarrow t_{field} =-100Hz \rightarrow t_{field} =-140Hz (10 periods each)	
(frequency ranges need to be revised based on the guidance of XP-501)	0
D. Lest low applied lield liequency $f = -20$, 20Hz (frequency pood to be revised based on VD 501)	2
$r_{\text{field}} = 20$, -2012 (inequency need to be revised based on AP-501)	

XP524 could be completed in 1.5 days (3)

<u>n=2</u>				
Repeat the most successful trials above with <i>n</i> =2 applied field				
Require over	ernight change	to n=2 configuration		
	<i>n</i> =1, 3	Plasma rotation alteration	16	
	<i>n</i> =1, 3	RWM rotation alteration	14	

n=2

Total

15

45

Schematic waveforms for RWM coil – XP524

W. Zhu – XP524

Required and Desired Diagnostics – XP524

Required

- CHERS toroidal rotation measurement; edge CHERS
- Locked mode detector measurements (external and internal)
- Toroidal Mirnov array
- Thomson scattering
- Diamagnetic loop
- Fast camera
- Desired
 - USXR
 - Two toroidal position USXR
 - MSE
 - FIReTIP interfrometer/polarimeter
 - Neutron detectors
 - H-alpha cameras

