XP-534 Investigation of perturbative electron transport vs. magnetic shear using pellet injection

D. Stutman, K. Tritz, L. Delgado-Aparicio, M. Finkenthal *(JHU)* H. Kugel, R. Kaita, R. Bell, E. Fredrickson, S. Kaye, B. LeBlanc, S. Medley, J. Menard, D. Mikkelsen, G. Rewoldt, L. Roquemore, E. Synakowski *(PPPL)* F. Levinton *(Nova Photonics)* S. Sabbagh *(Columbia University)* R. Maingi *(ORNL)* S. Kubota *(UCLA)*

Critical gradient paradigm for electron transport

- Empirical/theoretical model generally supported in tokamaks
- Does it apply on NSTX ?

As in Inagaki et al, PPCF 04

- Rapid perturbed transport where $T_{\rm e}$ gradient large, decreasing where $T_{\rm e}$ gradient decreases
- Investigate critical gradient using controlled T_e perturbation from pellets

How does pellet injection look so far

- Notch believed to reduce ablation by fast ions at the edge
- Large W_{tot}, smaller n_e perturbation (W_{tot} rolls over before pellet ?)

No, or minimal notch and smaller pellet perturbation needed for transport

Multi-color USXR gives picture of pellet perturbation

- Develop pellet injection as a perturbative transport tool in L- and H-mode
- Desired: no notch or minimal notch (10 ms, at least one beam on)
 highest penetration speed for shortest perturbation
- Study perturbed T_e gradient vs. magnetic shear changes in L- and H-mode
- Further develop 'multi-color' USXR for perturbative transport:
 - poloidal diode system
 - tangential 'optical' system in further experiments
- Experiments will also provide Li III Ly_a light for JHU turbulence Telescope

Run strategy

Little discharge development time -> compare established scenarios: Low n_e L- (115734,src A) vs. High n_e ELM-free H- (115872, src A+B) (reversed shear) (flat q)

- (i) Li pellet in L-mode at t ≈ 0.36 s, for few tens of percent ΔT_e at r/a ≥ 0.7 (MPTS timed at ~3 ms after pellet penetration shown by USXR)
- knobs: pellet size (2/1/0.5 mg), velocity (15/7.5 cm/ms), 10 ms beam notch

(ii) Measure L-mode cold-pulse propagation with optimal pellet

(iii) **B** pellet in H-mode at t \approx 0.36 s, for similar edge T_e perturbation

(iv) Measure H-mode cold-pulse propagation with optimal pellet

(v) Time permitting, pellet perturbations with changed magnetic shear

- L-mode: vary beam source and n_e (XP223)
- H-mode: vary beam timing (XP411)

Two shots per condition

Proposed shot matrix

B pellets into ELM-free H-mode 115872:							
0.8 MA, LSN, Src. A + B at 90 kV, t _{pellet} =360 ms							
	10 ms notch	Pellet mass	Velocity (m/s)	No of shots			
	(350-360 ms)	(mg)					
	no	2	150	2			
	no	1	150	2			
	no	0.5	150	2			
if perturbation too small							
	Src. B	2	150	2			
	Src. B	1	150	2			
if perturbation still too small							
	All sources	0.5	75	2			
Use optimized pellet injection with changed shear							
Delay all b	2						
Inject into 115	3						
t=0.2, 0.3, 0.4							

Li pellets into low n_e L-mode 115734: 1 MA, DND, Src. A at 90 kV, t_{pellet}=360 ms

	10 ms notch (350-360 ms)	Pellet mass (mg)	Velocity (m/s)	No of shots		
	no	2	150	2		
	no	1	150	2		
	no	0.5	150	2		
if perturbation too small						
	Src. A	1	75	2		
	Src. A	0.5	75	2		
Apply optimized pellet injection with changed shear						
	2					
Usi	2					

- Large shear changes with I_p ramp/beam time difficult this run (XP522)
- Moderate shear reversal however consistently obtained at low n_e
- Use change of source/higher n_e to reduce T_e and flatten q(r) (XP 223)

Magnetic shear variation in H-mode

- High T_e and peaked profile with late H-mode; likely also different shear
- Delay beam injection for ELM-free H-mode with changed shear (hints also from XP522)

Or: probe χ_e^{pert} while shear naturally evolves in H-mode

Measurement and interpretation issues

- MPTS, CHERS, MSE synchronized with pellet
- Visible, VUV spectroscopy, plasma camera with B/Li filters
- Pellet n_exn_z perturbation from multi-color USXR
- Δn_e also from FIR interferometry
- $T_i(t)$ estimate from NPA in fast T_i mode and dW_{tot} - dW_{el} (small at ELM)
- Possible treatments of T_i perturbation (fast CHERS needed at NSTX)
 - neglect change
 - use CHERS profile after pellet
 - use CHERS profile after pellet normalized with NPA change
- EFIT, TRANSP with 0.1 ms resolution
- All fluctuation diagnostics of interest
- GS2 linear stability before and after pellet