

Correlation of Edge Localized Modes and Electron Transport

K. Tritz, D. Stutman, L. Delgado Aparicio, M. Finkenthal JHU

R. Bell, R.Kaita, S. Kaye, B. LeBlanc, S. Medley J. Menard, E. Synakowski PPPL

> F. Levinton Nova Photonics

> > R. Maingi ORNL

S. Sabbagh Columbia U.

Correlation of Edge Localized Modes and Electron Transport

• Motivation

- ELM phenomena on NSTX appears different from conventional tokamaks (e.g. ΔW_{tot} , perturbative penetration)
- On NSTX, Type I ELM can perturb T_e profile with cold pulse reaching core on fast (~100's µs) time scales
- Similar T_e perturbations have been recently observed with Li pellet injection into H-mode discharges

Goals

- Distinguish between the Type I ELM and resultant perturbation
- Scale current to change electron transport and observe effect on cold pulse propagation
- Inject Li pellets after ELM period to compare perturbations

Type I ELMs Show Mixture of T_e, n_e Perturbation

Primarily T_e perturbation

.66 .67 Time (s)

.68

.69

In above cases, perturbation reaches core of plasma

280

260

.64

.65

ELM Perturbation Evolves on Different Timescales

- Use Be 100 μ m/Be 5 μ m ratios to propagate MPTS T_e profile
 - Use pre-ELM MPTS to fit model parameters (e.g., $n_e(R)$, $n_z(R)$, $T_e(R,t=t_0)$)
 - High / low energy USXR ratio T_e sensitive, $n_e \ge n_z$ factors out
 - USXR spectrum modeled with C, O, and B coronal radiative coefficients and EFIT mapping
 - Good agreement between USXR 'prediction' and subsequent MPTS T_e profile

Critical gradient paradigm for electron transport

Three parameter model applied at JET using controlled T_e perturbations (Garbet, Mantica 2004)

$$\chi_T = \chi_{\$} q^{\nu} \frac{T}{eB} \frac{\rho_{s}}{R} \left(\frac{-R\partial_r T}{T} - \kappa_{\circ} \right) H \left(\frac{-R\partial_r T}{T} - \kappa_{\circ} \right) + \chi_{0} q^{\nu} \frac{T}{eB} \frac{\rho_{s}}{R}$$

Model from Inagaki et ~' PPCF 04 (neglects ion damping)

 \bullet Rapid perturbed transport in the $T_{\rm e}$ gradient region, decreasing inside

Thermal Electron Confinement Scales with Ip

SMK-APS 11/04

10

Electrons Dominate Heat Loss In H-modes

- Use 'typical' high power LSN H-mode plasma which exhibits desired Type I ELM phenomena (117410)
 - Large outer gap optimizes Tompson coverage of boundary
 - Add Li pellets after ELM period for comparison of perturbation
- Scan plasma current at fixed TF to change electron transport
- Scan plasma current at fixed q (time permitting)

Diagnostics

- USXR (multi-color)
- MPTS (with edge resolution upgrade)
- CHERS
- Fast cameras for ELM imaging
- MSE
- Fast T_i

Analysis

- Multi-color analysis of ELM perturbation and cold pulse propagation
- Fast EFIT reconstructions will account for change in plasma geometry
- TRANSP calculations of equilibrium electron confinement
- If diagnostic coverage permits, stability analysis and computation of eigenmode depths to isolate MHD effects

lp	BT	# shots	comments
0.7MA	4.5kG	2	start current scan
0.8MA	4.5kG	2	if ELM timing repeatable, adjust TS time
0.9MA	4.5kG	2	
1.0MA	4.5kG	2	
1.1MA	4.5kG	2	
0.7MA	3.5kG	2	lower TF, same q as 0.9MA/4.5kG
0.8MA	4.0kG	2	intermediate TF, same q as 0.9MA/4.5kG
Total:		14	
additional high field shots: 1MA @ 5.0kG, 1.1MA @ 5.5kG x2 ea.			

- If more shot repetition is necessary (statistics or misfires) use coarser scan
- Li pellet will be injected after few ELM periods ~0.4-0.6s