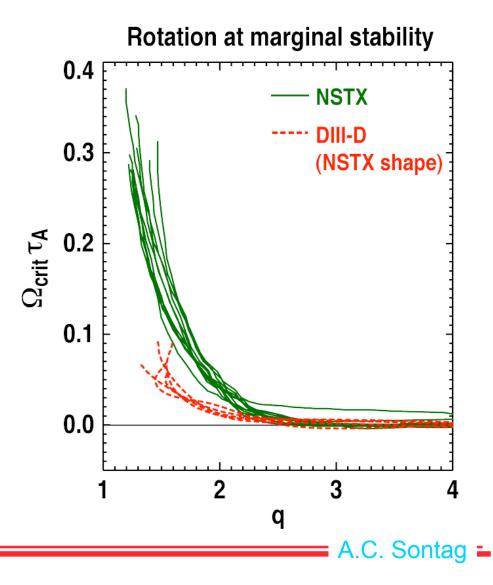
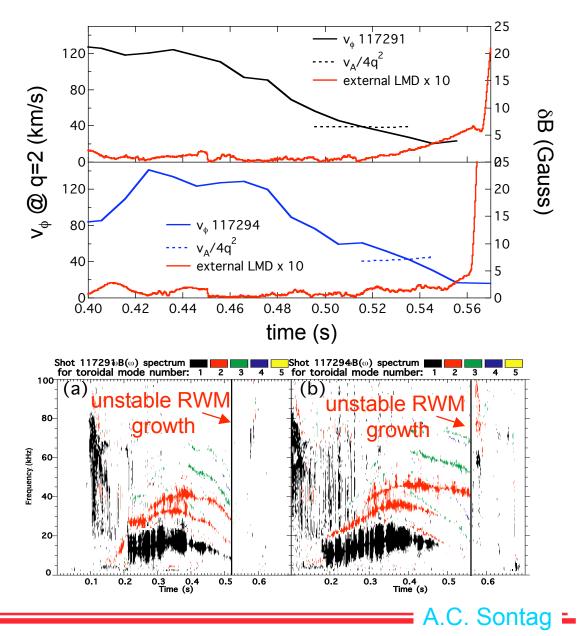
XP 619 Physics of Passive RWM Stabilization

- XP to explore the passive stability physics of the RWM
 - rotation control allows RWM destabilization 'on-demand'
 - past attempts hindered by high rotation
 - n = 3 rotation control demonstrated on several occasions
- examine parametric dependencies predicted by dissipation models
 - v_A: important parameter in several theories
 - $\omega_{\phi} \tau_{A} @ q = 2$ was previous factor cited for stability determination
 - NSTX data shows increased rotation across entire profile required as compared to DIII-D
 - \Box data at near constant v_A
 - $\hfill\square$ scan v_A independent of v_{ti} when q is fixed
 - \Box v_{ii} : NTV, neoclassical damping
 - dissipation included in MHD model as modification to parallel viscosity

= A.C. Sontag =


- $\hfill\square$ NTV has inverse dependence on ν_{ii}
- $\hfill\square$ neoclassical parallel viscosity proportional to v_{ii}

Determining v_A Scaling of RWM Stability Leads to Understanding of Physical Model


- Alfven speed important in stabilization models
 - coupling to Alfven continuum
 - □ degree of inertial enhancement
 - has become standard normalization for inter-machine comparison
- NSTX requires higher rotation than DIII-D using v_A normalization
 - aspect ratio dependence or other physics?
 - rotation similar using v_s normalization
- All NSTX Ω_{crit} data obtained at single B_t
 - no large variation in v_A

Rotating MHD Appears to Affect RWM Stability

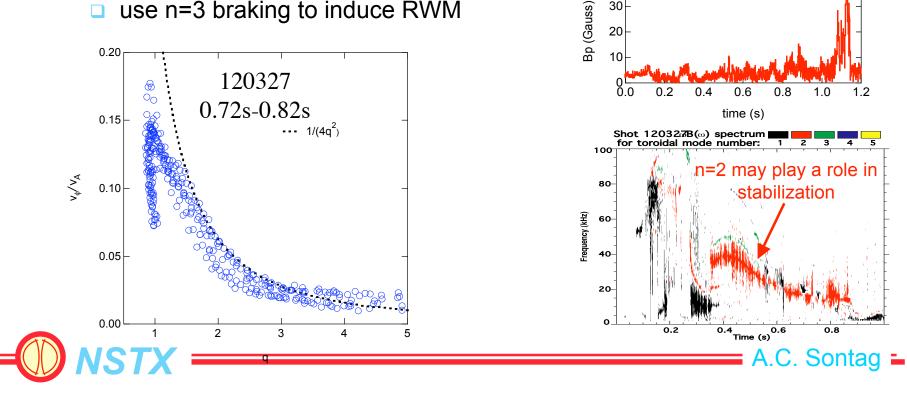
- RWM growth coincides with end of rotating MHD in both cases
- discharge with longer period of n=2 survives with lower rotation at q=2
- faster mode growth with delayed onset
 - DCON &W decreasing with time (becoming more unstable)

Higher-q Shot Passively Stable at Lower Rotation

<u>120327</u>

0.8 0.6

0.4 0.2


0.6

40

β

p (MA)

- $\beta_N > \beta_N^{no-wall}$ for several hundred milliseconds with marginal rotation
 - this shot: $q_{95} \sim 9$
 - 119250 (lower-q target): $q_{95} \sim 7$
- EFC on throughout shot no feedback
 - will turn off after 0.5 s in XP
 - avoids RFA

Parameter Scans

- At fixed $q_a \operatorname{scan} B_t \rightarrow \operatorname{vary} Alfven \operatorname{speed}$
 - $\Box v_A \sim B/n^{1/2}$ $v_{ti} \sim T_i^{1/2} = n^{-1/2}$

ion Landau damping dependent upon v_{ti}

- \Box vary I_p and B_t simultaneously
 - ~ 25% variation in B_t should be possible

Iower density at highest Ip

- avoid Greenwald limit at lower Ip
- Vary collisionality with density scan

use SGI and He conditioning to vary density

- able to vary ion collisionality by a factor of 2 this year
- natural density rise of ~ 20% during MHD free window

• vary time of mode onset

= A.C. Sontag =

Shot List

 Control shot 	
reproduce 119250	2
• v _A scan	
scan at constant q	
 I_p = 1.0 MA B_t = 0.45 T 	2
• $I_p = 0.89 \text{ MA B}_t = 0.4 \text{ T}$	8
 I_p = 1.1 MA B_t = 0.5 T 	8
• $I_p = 0.78 \text{ MA B}_t = 0.35 \text{ T}$ only if developed in a	another XP
higher q	
 I_p = 0.89 MA B_t = 0.5 T 	3
□ increase TF from 120705 – may need higher density to get rid of n=	-1
 I_p = 0.71 MA B_t = 0.4 T 	3
□ 120327 with EFC off @ 0.5s & $n=3$ braking applied	
Density scan	
beginning of n=1 free window in low-density discharge	2
end of n=1 free window in high-density discharge	2
Т	otal: 30
	A.C. Sontag
	3

Duration and Required / Desired Diagnostics

- XP could be completed in 1 run day
 - 0.5 T desired for wide range of q at high performance

• Required

- Magnetics for equilibrium reconstruction
- Internal RWM sensors
- CHERS toroidal rotation measurement
- Thomson scattering
- Diamagnetic loop

Desired

- USXR diagnostic
- MSE
- Toroidal Mirnov array

= A.C. Sontag =