

Z-scaling of impurity (C, Ne) transport in beam heated NSTX H-mode discharges

L. F. Delgado-Aparicio, D. Stutman, K. Tritz, and M. Finkenthal The Johns Hopkins University, The Plasma Spectroscopy Group

R. E. Bell, M. Bell, R. Kaita, S. Kaye, B. P. LeBlanc, S. Paul, L. Roquemore and D. Smith Princeton Plasma Physics Laboratory

> F. Levinton, H. Yuh NOVA Photonics, Inc.

NSTX, XP 613 (Review) May, 26, 2006 Princeton, New Jersey, USA

Motivation

- Continue the impurity particle transport studies in NSTX (done already for L-mode) for the H-mode, estimating the dependence of $D_Z \& v_Z$ for different Z and plasma parameters (ρ^*).
- Preliminary estimates in H-mode indicate that we might have small (close to neoclassical) impurity D_Z as well as $v_Z > 0$.
- Convective impurity transport could play an important role in NSTX (flat n_e and peaked T_i) H-modes, where "temperature screening" might be shielding the plasma core from low Z impurities.
- These impurities studies are **relevant for future STs** and **ITER** operational scenarios where **screening of high-Z impurities** is invoked to **shield** the plasma core.

First assessment of impurity transport in NSTX *H-modes*

Hollow carbon distribution

- 1. D_Z falling into the neoclassical range also *outside* r/a > 0.5
- 2. V_Z >0 (convective outward velocity)

[1] D. Stutman, et. al., EPS Conference on Plasma Physics and Controlled Fusion (2002).

Impurity diffusivity for C pellet is also low (2005, 117994)

[2] D. Stutman, et. al., Transport Task Force meeting, Myrtle Beach, NC (2006).

Impurity transport technique applied in NSTX L-modes

- Filtered diode arrays measure peripheral, mid and core Neon ions.
- The Neon contribution is obtained from consecutive, reproducible shots.
- Inclusion of peripheral charge states (P_{rad}) improves D, V estimate
 - \therefore D_{Ne} is in neoclassical range inside r/a < 0.5

[1] D. Stutman, et. al., EPS Conference on Plasma Physics and Controlled Fusion (2002).[3] D. Stutman, et. al., POP, 10, 4387, (2003).

XP 613

- We want to establish the D_z and v_z dependence by using C & Ne impurities.
- Compare first CD₄ and N_e gas injections.
- Scan puff lengths ($P_{plenum} \sim 100 \text{ torr}$) ~ 50, 100 & 200 ms.
 - 1. Use Bay B mid-plane puffers.
 - 2. Use gases to perform the Z-scaling.
 - 3. MIST simulations show ~ few hundred ms time evolution.
 - 4. Need long pulse ($\sim 1.0 1.2$ s).
 - 5. Time average values of D_z and v_z will be obtained.
- Use Carbon pellets to probe time evolution of D_z and v_z (~30 ms).
 - 1. First optimize pellet size and speed.
 - 2. Scan pellet timing.
- If time permits, perform ρ^* scaling to probe neoclassical effects.

Shot matrices

CD_4 & Ne injections

Vitreous C pellet injections

Baseline (120428 , 1MA, 4.5 kG)	2 shots	Base. + pellet @ 350 ms (0.55mg, v_f)	2 shots
Gas injection @ 350 ms ($\Delta t \sim 50$ ms)	1 shot	Pellet @ 350 ms (0.55mg, $v_f/2$)	1 shot
Baseline + gas inj. (Δt~100 ms)	2 shots	Pellet @ 350 ms (0.25mg, v _f)	1 shot
Baseline + gas inj. ($\Delta t \sim 200 \text{ ms}$)	2 shots	Pellet @ 350 ms (0.25mg, $v_f/2$)	1 shot
Total (x2)	14 shots	Time scan of optimized size/speed	
		Pellet @ 650 ms	2 shots
		Pellet @ 850 ms	2 shots
		Total	9 shots