C-MOD/MAST/NSTX small ELM regime comparison

XP review PPPL, April 5, 2006

Amanda Hubbard (*MIT PSFC*), Rajesh Maingi (*ORNL*), Hendrik Meyer (*UKAEA*)

Aims

- Establish dimensionless pedestal comparison with small ELMs between MAST/NSTX/C-MOD
 - Only three of the 4 parameters q₉₅, v_{ped}^{*} , β_{ped} , and ρ_{ped}^{*} can be held constant due to different R/a.
 - Perform a two point scan in β_{ped} and $\rho_{\text{ped}}^{\quad *}.$
- · Identify similarities and differences between the regimes:
 - Is the type-V ELM regime (NSTX) similar to EDA or HRS-mode on C-MOD and JFT-2M? To the C-Mod 'small ELM' regime at higher P?
 - All 3 experiments have diagnostics to measure edge fluctuations and pedestal profiles; may also help to understand **pedestal width scaling**.
- This experiment corresponds to ITPA proposal PEP-16, from the pedestal ITPA topical group and approved at the recent IEA workshop in San Diego.
 - Follows a successfully completed comparison (PEP-12) which established similarity between C-Mod EDA and JFT-2M HRS regime at higher R/a and identified q_{95} , v^* as key parameters.

Background (PEP-12): H-mode operating spaces in q_{95} vs v^* on C-Mod (R/a~3) and JFT-2M (R/a~5) proved very similar

• Some overlap in ELM, H-mode types at intermediate v^* : 'Mixed' or EDA+ELM regime at higher β , ELMy at lower β on C-Mod.

Shape match identified in 2005

Approximate target parameters for '06 expts

	MAST	C-MOD	NSTX
T_{e}^{ped}	0.15 keV	0.53 keV	0.15 keV
n_{e}^{ped}	2.6e19 m ⁻³	4.5e20 m ⁻³	2.6e19 m ⁻³
B _t	0.6 T	5.4 T	0.55 T
l _p	1 MA	0.6 MA	0.8-1 MA
q ₉₅	5-6	5-6	5-6
R ₀	0.85 m	0.7 m	0.85 m
а	0.6 m	0.2 m	0.6 m
eta_{ped}	~0.65 %	~0.65 %	~0.65 %
$ ho_{ped}^{*}$	0.004-0.007	0.004-0.007	0.004-0.007
v_{ped}^{*}	0.5-3	0.5-3	0.5-3

Run Plan – one day

Run plan:

- 1. Reproduce target shape with rtEFIT from #111382 at 0.22 sec (κ =1.7, δ =0.45, drsep = -1 cm), at higher I_p ~ 1.0 MA and B_t ~ 0.55 (q₉₅~5.5-6). The high B_t is needed to get target β_{ped} within the C-MOD range, and the high I_p is needed to get target q₉₅ and reasonable T_{ped} for target ν^* ~ 1. Baseline discharge will have 2 NBI sources. (5-10 discharges)
- 2. Vary the β_{ped} value by doing an NBI scan from 1 to 3 NBI sources; we expect 1-2 sources will yield the target β_{ped} value. Use NBI modulation as needed to obtain finer control over P_{in} and therefore T_{ped} , β_{ped} and v^* (3-5 discharges)
- 3. Attempt to control the density ramp in NSTX, either by controlling the gas fueling and/or by using Lithium, if available. Adjust B_t to 0.5 T, 0.45 T if needed, reducing I_p to maintain constant q₉₅ This will give more independent control over T and n, allowing us to decrease v^{*} and increase ρ^*_{ped} for given β_{ped} , mapping out more of the operational space and increasing overlap with C-Mod discharges. (5-10 discharges)
- In all of these discharges, attention will be paid to obtaining good pedestal profiles and fluctuation data, so that regimes and parameters can be clearly distinguished.

