

Divertor heat flux reduction and detachment in CTF-relevant (highly shaped) plasmas

V. A. Soukhanovskii and the NSTX Team

> NSTX Team Review 8 February 2007 Princeton, NJ

NSTX FY08 milestone, ST development path and divertor physics studies motivate the XP

- NSTX Edge Physics Milestone FY2008
 "Study variation and control of SOL heat flux..."
- NSTX high κ , δ LSN plasmas (developed in J. Menard's XP) show potential for future ST-CTF:
 - high β_t , β_n
 - long pulse, high H89P scaling factor
 - high bootstrap and non-inductive current fractions
 - small or no ELMs
- Test radiative and dissipative divertor techniques for divertor peak heat flux reduction in highly shaped plasmas
- Study lower divertor geometry effects on particle and heat fluxes
- Study upper divertor properties on particle and heat fluxes (new FY07)

Divertor peak heat flux reduced by 2-5 with radiative/dissipative divertor in lower κ , δ plasmas

- Completed low δ,κ part in 2006
- Multi-institutional experiment LLNL, ORNL, PPPL, U Washington, UCSD
- C. J. Lasnier (LLNL staff at DIII-D) participated in 2005 experiment
- NSTX results to date (4 MW NBI lower δ,κ H-mode plasma)
 - ☑ OSP does not detach at high densities ($n_e \sim n_G$) as a result of short L and open divertor geometry. ISP detaches at low n_e , P_{in}
 - Midplane neon puffing produces radiative mantle
 - \square Obtained OSP partial detachment with high-rate D₂ puffing in ISP region
 - ✓ Peak OSP heat flux reduced by 2-5
 - Core confinement degrades within 2-5
 - $\checkmark\,$ H-L transition within 20-50 ms (too much gas)
 - ✓ X-point MARFE forms quickly
 - \blacksquare Obtained radiative divertor with moderate D₂ puffing in PFR or ISP region
 - ✓ Peak OSP heat flux reduced by 2-5
 - ✓ Good core confinement (1.6 H89P), H-mode
 - ✓ Outer SOL in high recycling regime
 - ✓ X-point MARFE eventually forms as well
 - $\checkmark\,$ Promising scenario for future experiment

Publications and collaborations

- Publications
 - Oral talk in NSTX session at APS 2005
 - PSI-17 poster
 - Two JNM papers (2005, 2007)
 - IAEA FEC 2006 individual poster and paper
 - Paper to be submitted to NF (01/2007)
- Collaboration potential
 - Discussed possible collaboration with DIII-D (through LLNL program)
 - Discussed collaboration with J. Myra (Lodestar)
 - Possible collaboration with MAST

More favorable scaling of peak OSP heat flux with input power is obtained in higher κ , δ plasmas

- Scaling depends on fueling location and gas injection rate
- *P*_{SOL} is determined from measured and TRANSP-calcualted quantities as

 $P_{SOL} = P_{NBI} + P_{OH} - dW_{MHD}/dt - P_{rad}^{core} - P_{fast \ ion}^{loss}$

V. A. Soukhanovskii, XP 708 Review, 8 February 2007

5 of 8

Divertor heat flux reduction scenario in highly shaped plasmas may be different

- High-performance long-pulse LSN H-mode plasmas (J. Menard)
- Poloidal flux expansion at OSP 20-25
- ISP on vertical target (detached), OSP on horizontal target
- OSP detachment threshold to be investigated (geometry)
- Divertor gas injectors in PFR and OSP region

Run plan - overview

- Divertor D₂ puffing (~ 0.5-0.7 day)
 - Target plasma 4-6 MW H-mode LSN plasma, 0.7-0.8 MA, 5 5.5 kG, δ~0.7-0.8, κ~2.3
 - Try 200-400 Torr I / s from LDGIS and 100-160 Torr I /s from Branch 5 injectors
 - Diagnostic set is ready
- Extrinsic impurity puffing (CD₄ or N₂) (~ 0.2-0.5 day)
- Measure divertor heat flux profiles, D_α, D_γ, C III divertor and midplane profiles, rad. power, particle fluxes, edge and divertor T_e, n_e for comparison with models
- If GPI diagnostic and fast cameras are available, test blob radial transport theory
 - Proposed at NSTX RF FY 07 by J. Myra (Lodestar), also discussed by R. Maqueda (Nova Photonics), J. Boedo (UCSD)
 - Blob rad. velocity increases with resistivity (disconnection from sheath)
 - Disconnection is achieved through X-point cooling or OSP detachment
 - Use UCSD probe, GPI and fast cameras during divertor gas injections

Shot template has been well developed

Back-up slides

UEDGE modeling guided detachment experiments

- Model divertor conditions vs P_{in}, n_{edge} with UEDGE to guide experiment
- Generic low κ,δ LSN equilibrium used
- Diffusive transport model
- Impurities (carbon) included
- Outer midplane n_e , T_e profiles matched, D_{α} and IRTV not matched

Parallel momentum and power balance:

$$\frac{d}{ds}(m_i nv^2 + p_i + p_e) = -m_i(v_i - v_n)S_{i-n} + m_i vS_R$$
$$\frac{d}{ds}((-\kappa T_e^{5/2}\frac{dT_e}{ds}) + nv_{||}(\frac{5}{2}(T_i + T_e) + \frac{1}{2}m_i v_{||}^2 + I_0)) = S_E$$

V. A. Soukhanovskii, XP 708 Review, 8 February 2007 10 of 8

Large momentum and power losses are needed for divertor detachment according to 2PM-L

1 of 8

awrence Livermore National Laboratory

Why is it difficult to obtain OSP detachment?

- Connection length decreases to very short values within radial distance of 1-3 cm (both midplane to plate and X-point to plate)
- SOL temperature 10-40 eV (rather low)
- Weak dT_e/ds_{\parallel} in high-recycling outer SOL
- Carbon cooling rate max at $T_{\rm e}$ < 10 eV

• Recombination time:

$$\tau_{rec} = 1./(n_e R_{rec}) \sim 1-10 \text{ ms at } T_e = 1.3 \text{ eV}$$

lon divertor residence time:
 $\tau_{ion} = L_d/v_{ion} \sim 0.8 \text{ ms}$ (with $v_{ion} \sim 10^4 \text{ m/s}$)

- Open divertor geometry high detachment threshold is expected
- Neutral compression ratio is 5-10 (low)

V. A. Soukhanovskii, XP 708 Review, 8 February 2007 12 of 8

Observed midplane and PFR pressure trends are due to open divertor geometry

- In reference discharges, n_u independent of P_{mp} , but a strong linear function of P_{PFR}
- X-point MARFE critical PFR pressure is 0.5-0.6 mTorr
- Reference discharges never reach
 PFR critical pressure
- PDD discharges reach MARFE onset PFR pressure faster than RD discharges
- P_{mp} similar in ref. and RD discharges
- *P_{mp}* higher in PDD discharges (stronger gas puffing)

wrence Livermore

NSTX Gas system

Lawrence Livermore National Laboratory V. A. Soukhanovskii, XP 708 Review, 8 February 2007 14 of 8

NSTX Lower Dome and Branch 5 gas system

