

XP728: RWM active stabilization and optimization – ITER scenario

S.A. Sabbagh¹, R.E. Bell², J.E. Menard², D.A. Gates², J.M. Bialek¹, B. LeBlanc², F. Levinton³, K. Tritz⁴, H. Yu³

¹Department of Applied Physics, Columbia University, New York, NY

²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³Nova Photonics, Inc., Princeton, NJ, USA ⁴Johns Hopkins University, Baltimore, MD, USA

NSTX Team XP Review Meeting

May 8th, 2007 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching **U** Quebec

Department of En

XP728: RWM active stabilization and optimization

Goals

- Investigate variations of control sensor combinations to optimize RWM stabilization at low plasma rotation, ω_{ϕ} (more robust, reach higher β_{N})
 - Use upper/lower RWM B_r, B_p sensors for feedback (ran out of time in 2006)
 - Examine possible poloidal deformation of RWM during feedback
- Investigate active stabilization of recent plasmas that exhibit unstable RWM activity leading to discharge termination at <u>high</u> ω_{ϕ} .
- □ Explore possible stable region at $\omega_{\phi} < \omega_{*i}$ with feedback is turned off
- □ Investigate RWM active stabilization of low ω_{ϕ} plasma with superposed time-averaged n = 1 error field correction + n = 3 magnetic braking
 - (Fredrickson, Garofalo suggestion from 2006, but no run time)
- □ Measure n =2-3 RFA, attempt to destabilize n = 2 RWM with n = 1 stable
- □ Introduce and study effect of applied time delay on feedback (ITER support)
 - Depends on control system time delay capability in 2007

Addresses

NSTX milestone R(07-2), NSTX PAC request

ITPA experiment MDC-2, ITER issue card RWM-1, USBPO MHD task

RWM actively stabilized at low, ITER-relevant rotation

- Logical next-step of XP615 addresses several key issues
 - Optimal RWM sensor configuration
 - Dependence of active stabilization on ω_{ϕ}
 - Possible stable region at sufficiently low ω_{ϕ} without active stabilization
 - □ If stable region with low ω_{ϕ} is found, scan magnitude to determine range of stable ω_{ϕ} .

Approach

- Follow established Xp615 procedure to generate RWM stabilized, low rotation target
- Make control system parameters scans, rotation scans to fulfill stated goals

Test improved control with addition of new sensors

- Poloidal deformation of RWM sometimes observed
 - Poloidal n = 1 RWM field decreases to near zero; radial field increasing
- Subsequent growth of poloidal RWM field
 - Asymmetric above/below midplane
- Radial sensors show RWM bulging at midplane
 - midplane signal increases, upper/lower signals decrease
 - Theory: may be due to other stable ideal n = 1 modes becoming less stable

Approach

Include full set of RWM sensors (upper and lower, B_p and B_r) in feedback circuit – new PCS capability (tested piggyback 2006)

Does stable high β_N , low ω_{ϕ} region exist *without* feedback in NSTX?

n = 2 RWM does not become unstable during n = 1 stabilization

- ...but, can the n = 2 RWM be driven unstable at higher β_N ?
 - □ Unstable *n* = 1 − 3 RWMs already observed in NSTX (Sabbagh, et al., NF **46** (2006) 635.)
 - Generate controlled, measured n = 2 RFA during n = 1 stabilization, and drive unstable

Approach

- RFA measurements for n = 2 and 3 can be made for most conditions
- To destabilize n = 2 RWM, use "optimized" control system configuration and plasma configuration to maximize β_N

P728: Active RWM Stabilization - Run plan	<u>n (Part</u>
Task Nu	umber of Sho
1) <u>Create target plasma</u>	
A) Run active feedback in piggyback mode in prior experiments to verify operation	in -
B) 3 NBI, κ > 2.2, β_N > $\beta_N^{\text{no-wall}}$ (control shot - 123529 as setup shot)	1
C) Drop I _p to 0.9 MA from 1.0 MA	1
2) Reproduce active RWM stabilization at low plasma rotation	
A) n = 3 braking, n = 1 feedback w/B _{pu} sensors, adjust n = 3 braking if ω_{ϕ} > 0.5 Ω	crit 2
B) Reproduce (2A) with $n = 1$ feedback off - demonstrate unstable RWM at low α	ο _φ 2
3) Optimize n = 1 feedback sensors at low ω_{ϕ}	
A) Adjust relative phase between sensors / RWM coil current if (2A) <> shot 120	717 3
B) Add B _{pl} sensors to feedback circuit	1
C) Use B _{pu} + B _{pl} average (150 degree spatial offset)	1
F) Vary relative phase between sensors / RWM coil	4
D) Add upper/lower B _r sensors to feedback circuit	1
E) Add B _{ru} + B _{rl} average (260 degree spatial offset)	2
G) Vary relative phase / feedback parameters to further optimize performance	6

Total: 24

XP728: Active RWM Stabilization - Run plan (Part 2)

Task	Number of Shots
4) <u>n = 1 RWM stabilization with various rotation profiles < Ω_{crit}</u>	
(best feedback settings from step (3))	
A) Vary n = 3 braking current to create scan of profiles 0 < ω_{ϕ} << Ω_{crit}	8
Gate off active feedback for many wall times (100 ms) to determine which	i, if
any profiles are stable at low rotation without $n = 1$ feedback	
B) If any ω_{ϕ} profiles are stable without n = 1 feedback in (5A), re-run shot with	2
feedback turned off	
5) Check pre-programmed average of n = 1 feedback current for stabilization	
A) Attempt stabilization using avg. $n = 1$ feedback current for best case of (3) a	above 2
B) If successful, vary plasma parameter(s) (e.g. κ) to test robustness of stability	zation 2
6) Measure n > 1 RFA at maximum β_N ; attempt n = 2 RWM destabilization with n =	<u>= 1 stable</u>
A) Take highest β_N stabilized plasma at low and run at maximum $\beta_N / \beta_N^{no-wall}$	
(options: increase NBI power, optimize DRSEP, use lithium, drop I_p by 100)A) 2
7) Examine feedback performance vs. feedback system latency	
A) Increase feedback system latency from optimized settings to find critical lat	ency
for mode stabilization	6

Total: 16 w/o latency scan; 22 with latency scan

XP728: Active RWM stabilization - Diagnostics

Required diagnostics

- Internal RWM sensors
- CHERS toroidal rotation measurement
- Thomson scattering (30 point)
- USXR
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis

- Diamagnetic loop
- Desired diagnostics
 - FIReTip
 - Fast camera

