

XP802: Active RWM stabilization system optimization and ITER support

S.A. Sabbagh¹, R.E. Bell², S. Gerhardt², J.E. Menard², J.W. Berkery¹, J.M. Bialek¹, D.A. Gates², B. LeBlanc², F. Levinton³, K. Tritz⁴, H. Yu³

¹Department of Applied Physics, Columbia University, New York, NY

²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

³Nova Photonics, Inc., Princeton, NJ, USA ⁴Johns Hopkins University, Baltimore, MD, USA

NSTX Research Team Review

April 8th, 2008 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Department of En

XP802: Active RWM stabilization system optimization and ITER support

Goals

- Alter active control configuration to achieve reliable RWM stabilization at various plasma rotation, ω_{ϕ}
 - Upper/lower RWM B_r, B_p sensors, follow from best CY2007 feedback settings
 - B_r sensor feedback provides RFA correction, B_p provide RWM stabilization
 - Determine if stable, low $\omega_{\phi} < \omega_{*i}$ operation exists with feedback turned off
 - If achieved, control system open as a tool for all NSTX XPs as desired
- Specific ITER support requests
 - Study effect of applied time delay on feedback (new control system capability)
 - Determine impact of a large toroidal gap on active RWM stabilization (take out one of six control coils)

Addresses

- Joule milestone, ITER Organization (IO) request, NSTX PAC request
- □ ITPA experiment MDC-2, ITER issue card RWM-1

VALEN code reproduces B_{pu} sensor feedback performance

- New model simulates experiment
 - Upper B_p sensors located as on device
 - Compensation of control field from sensors
 - Experimental equilibrium reconstruction (including MSE data)
 - Proportional gain

Varying relative phase shows positive/negative feedback

- Internal plasma mode seen at $\Delta \phi_f = 225^\circ$, damped feedback system response
- Agreement between theoretical and experimental feedback behavior

Combination of upper/lower Bp sensors used to improve control

- Feedback phase scan using B_{pu} and B_{pl}
 - Best phase shown 90°, not optimal configuration
 - Reduction in ∆B_{pu}ⁿ⁼¹ growth rate
 - Spatial phase offset between upper/lower B_p sensor flux can improve feedback further
 - Control using B_{pu} and B_{pl} also reduces ΔB_{r}

 - Suggests that feedback on ∆B_r may allow mode control

Feedback on B_r sensors alone insufficient for control

XP802 review - S.A. Sabbagh

XP802 review - S.A. Sabbagh

4

3

2

q

R (m)

Reliable feedback stabilization, various plasma rotation

Approach for optimization

- Start from optimal feedback, using correcting n = 3 phase (medium |ω_φ|, unique, broad ω_φ profile)
- Feedback using all B_r and B_p sensors – determine best feedback phase / gain
- □ Slow reduction of ω_{ϕ} using n = 3 braking to vary ω_{ϕ} profile
- □ Maintain high $\beta_N > \beta_N^{\text{nowall}}$

<u>Goal: create lowest possible ω_{b} for feedback stabilization</u>

Approach reduced rotation from broadest rotation profile possible
 Use n = 3 in correcting phasing first, then change to braking phasing
 Gate off n = 1 feedback once rotation is slower than typical marginal profiles

Several issues need to be addressed for RWM feedback optimization / ITER support

Optimization

- Feedback with B_r sensors to stay below B_rⁿ⁼¹ threshold for RWM destabilization
- □ Combined with RWM feedback with upper/lower B_p sensors
 - faster control computer for 2008 run
- **Create low** ω_{ϕ} plasma from broader ω_{ϕ} , n = 3 corrected target

ITER support

- Demonstrate RWM feedback control with one coil removed to simulate ITER port plug RWM coil design
- Initial shots with neon to support RWM SXR tomography (Tritz)

XP802: Active RWM Stabilization / ITER Support (I)

Number of Shots

1) Create target plasma

Task

A) Run active feedback in piggyback mode in prior experiments to verify operation	-
B) 3 NBI, κ > 2.2, β_N > $\beta_N^{\text{no-wall}}$ (control shot) - 125329 as setup shot (n=3 correction)	2
C) moderate n = 3 braking once core ω_{ϕ} is reduced; generate RWM	3
2) Optimize n = 1 feedback sensors at intermediate ω_{ϕ}	
A) Upper/lower B _r sensor feedback (start with past "best" FB phase; vary phase)	4
B) Vary B _r gain	2
C) Add upper/lower B_p sensors to feedback circuit, vary FB and u/l spatial phase	6
D) Vary B _p gain	2
3) Active RWM stabilization at low ω_{ϕ}	
A) vary onset time, ramp rate, magnitude of $n = 3$ braking	4
B) gate off feedback at low ω_{ϕ}	2
4) Reliability testing	
A) Repeat best low rotation stabilized shot in repeated shots	4
(feedback gated off - add neon for SXR tomography)	

Total: 29

XP802 review - S.A. Sabbagh

XP802: Active RWM Stabilization / ITER Support (II)

Task	Number of Shots
5) <u>Examine feedback performance vs. feedback system latency</u> A) Increase feedback system latency from optimized settings to find critical la	itency
for mode stabilization	4
6) <u>n = 1 RWM stabilization with one RWM coil omitted</u>	
 A) Create low rotation target plasma with "n = 3" braking; generate RWM 	2
B) As (A), but with neon for SXR tomography	3
C) Upper/lower B _r sensor feedback; vary phase	4
D) Add upper/lower Bp sensor feedback ; vary phase	2
E) Vary feedback gain	3

Total: 18

XP802: Active RWM stabilization - Diagnostics

Required diagnostics / capabilities

- Ability to operate RWM coils with one coil turned off (Part 6 of run)
- Internal RWM sensors
- CHERS toroidal rotation measurement
- Thomson scattering
- USXR
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
- Diamagnetic loop
- Desired diagnostics
 - FIReTip
 - Fast camera

