Supported by

Columbia U

XP804: Comparison of NTV among tokamaks (n = 2 fields, v_i scaling)

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, J.M. Bialek¹, S. Gerhardt², B. LeBlanc², J.E. Menard², K. Tritz³

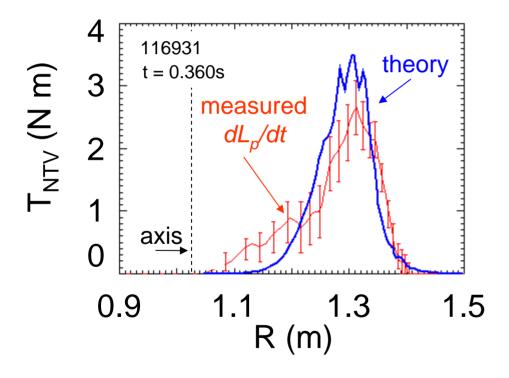
¹Department of Applied Physics, Columbia University, New York, NY
²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
³Johns Hopkins University, Baltimore, MD, USA

March 5th, 2008
Princeton Plasma Physics Laboratory

Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL PPPL PSI** SNL **UC Davis UC Irvine UCLA UCSD U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst **TRINITI KBSI KAIST** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP. Garching U Quebec

XP804: Comparison of neoclassical toroidal viscosity (NTV) among tokamaks (n = 2 fields, v_i scaling)

Goals


- Compare NTV results/analysis on NSTX to other devices
 - n = 2 data available JET, C-MOD, initial results in MAST (writing MAST 08 XP)
- Test NTV theory for n = 2 applied field configuration
 - n = 2 may be best for comparison to other devices (n = 1 strongest resonant rotation damping, n = 3 weak in some devices, many machines run n = 2)
 - Examine possible RFA effects by varying proximity to no-wall limit
- Investigate damping over widest possible range of ion collisionality to determine affect on rotation damping and compare to theory
 - Key for ITER, comparison to other devices important
- Supplement past published NSTX results (XP524) using n = 1, 3 fields
 - Modifications to theory to be examined (e.g. multiple trapping states)
 - Reversed I_D operation may allow ω_Φ offset term measure (~ few kHz)

Addresses

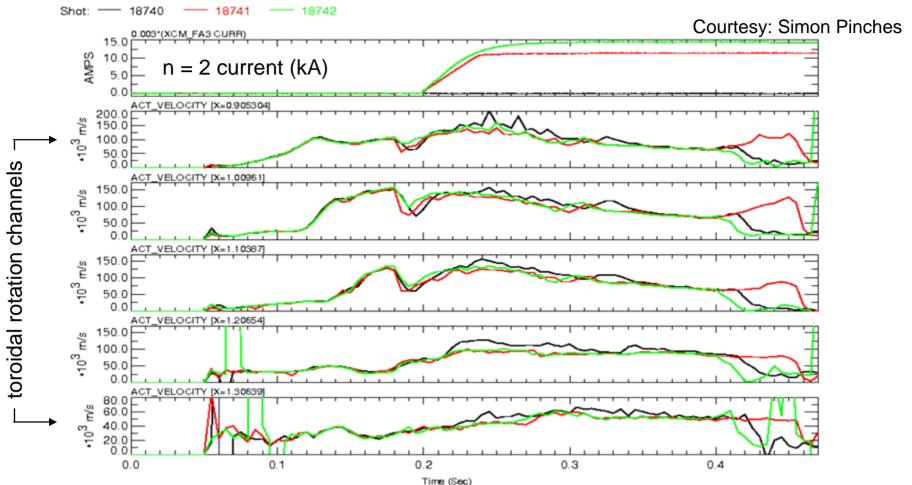
- Joule milestone, leverages ST geometry
- □ ITER support (RWM coil design), ITPA joint experiment MDC-12

Observed rotation decrease follows NTV theory

n = 3 applied fieldconfiguration

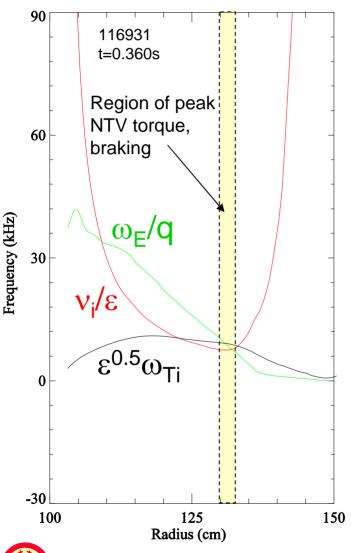
(Zhu, et al., PRL **96** (2006) 225002.)

Further test NTV theory; compare to other devices


- Trapped particle effects, 3-D field spectrum important for quantitative agreement
- □ Scales as $\delta B^2(p_i/v_i)(1/A)^{1.5}$
- Low collisionality, v_i , ITER plasmas expected to have higher rotation damping
- Saturation of $1/v_i$ scaling expected by theory, can it be found?

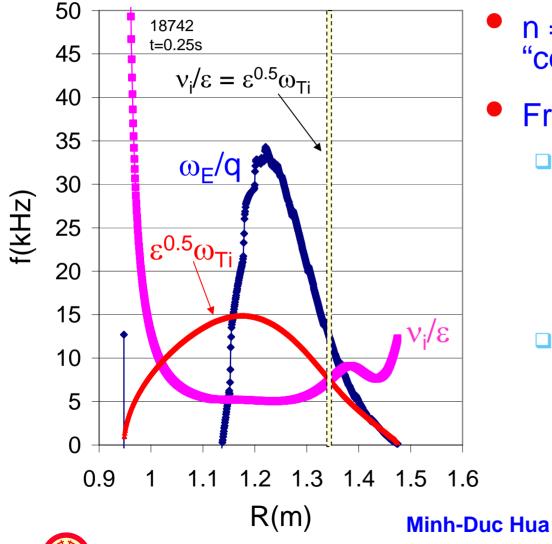
Approach

- Use n = 2 field to slow ω_{ϕ} at low, high β_{N} (check RFA)
- Vary collisionality (as in past XPs) to produce ~ at least a factor of 2 variation in NSTX

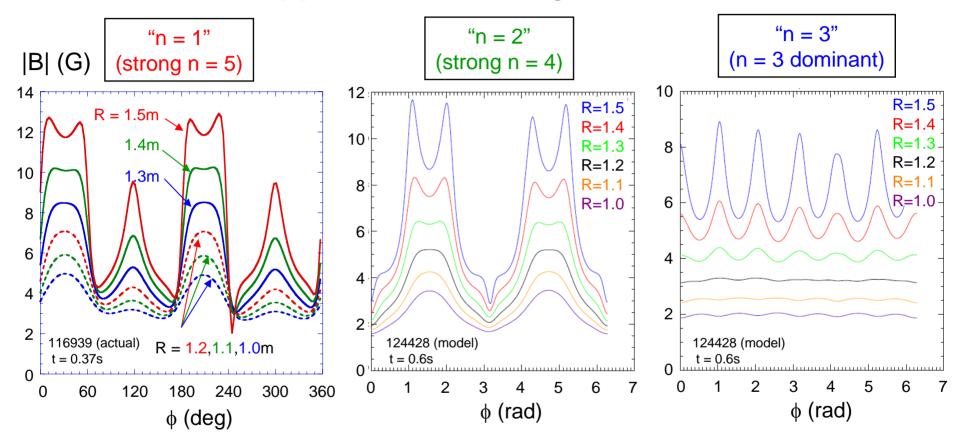


MAST first n=2 NTV experiment shows little effect

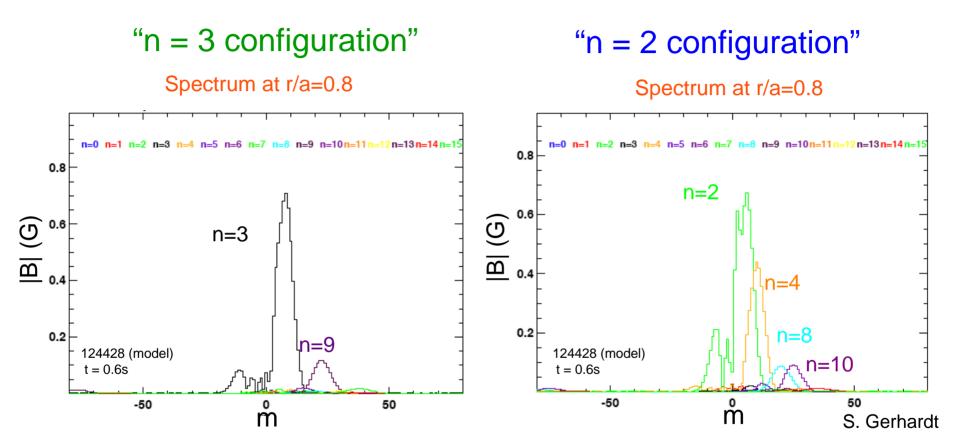
- MAST first results show an initial drop in rotation when the n = 2 field is switched on, but rotation the same in all three shots at a later time.
- BUT JET n = 2 experiment showed clear braking effect!


ExB rotation, effective ion collision, and bounce frequencies – NSTX 116931

- n = 3 braking "configuration
- Frequency profiles
 - □ Collisionless NTV formulation valid in region of peak measured damping where $ω_E/q \sim v_i/ε \sim ε^{0.5}ω_{Ti}$
 - Computed/observed damping near boundary (low T_i, collisional regime) typically far weaker
 - □ Uncertain if $\omega_{\rm E}$ < $\epsilon^{0.5}\omega_{\rm Ti}$ criterion is required for collisionless damping
 - Adequate criterion to describe NTV saturation due to E_r effects?
 - the ω_{E} calculation neglects poloidal flow and uses carbon ω^* so is probably overestimated


MAST - ExB rotation, effective ion collision, and bounce frequencies – case with weak n = 2 braking

- n = 2 braking "configuration
- Frequency profiles
 - □ Collisionless NTV formulation valid in region of peak measured damping where $\omega_{\rm E} < v_{\rm i}/\epsilon < \epsilon^{0.5}\omega_{\rm Ti}$
 - Does n = 2 field penetrate to this depth (1.34m)?
 - □ Also, $ω_E > v_i/ε$, $ε^{0.5}ω_{Ti}$ unlike NSTX
 - Could this be a key difference in braking result?
 - Need to compare ω_E calculations more closely


Significant differences in |B| between n = 1, 2, 3 applied field configurations

- Field more uniform vs. toroidal angle in higher n configuration
- Smaller n spectrum in higher n configuration

Broader field spectrum in n = 2 config vs. n = 3 config

- Broader spectrum and greater radial penetration should lead to larger NTV damping and extended radial profile
- n = 2 configuration has very small n = 1 component reduces resonant braking and n = 1 NTV due to RFA

XP804: NTV n = 2 and v_i - Run plan

Task Number o	f Shots
1) Create targets (i) below, but near and (ii) above ideal no-wall beta limit (control shots)	
(use 120038 as setup shot, 2 or 3 NBI sources, relatively high κ ~ 2.4 to avoid rotating modes)	
A) No n = 2 applied field; 3, then 2 NBI sources	2
2) Apply n = 2 field	
A) Step up n = 2 currents during discharge in 75ms steps, 3 NBI sources	2
B) Step up n = 2 currents during discharge in 75ms steps, 1 or 2 NBI sources	2
C) n = 2 DC pulse at steady ω_{ϕ} measure spin down, pulse off to measure ω_{ϕ} spin-up, 3 NBI	3
D) n = 2 DC pulse at steady ω_{ϕ} measure spin down, pulse off to measure ω_{ϕ} spin-up, 1 or 2 NBI	3
E) n = 6 DC pulse at steady ω_{ϕ} measure spin down, pulse off to measure ω_{ϕ} spin-up, 3 NBI	3
3) <u>Ion collisionality variation</u>	
A) Vary v_i at constant q , apply $n = 2$ field during period free of strong rotating modes	8
B) Increase n = 2 field at collisionality where damping is weakest	3
4) Reversed I _p scans	
A) Repeat scans 1 and 2 above in reversed I _p	
Total (standard I _p ; reversed I _p): 26;

XP804: NTV n = 2 and v_i - Diagnostics

- Required diagnostics / capabilities
 - Ability to operate RWM coils in n = 2 configuration
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - USXR
 - MSE
 - Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
 - Diamagnetic loop
- Desired diagnostics
 - Internal RWM sensors
 - FIReTip
 - Fast camera

