Momentum Transport Studies Using n=3
Non-Resonant Braking
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 AIms:
— Continue characterization of momentum transport on NSTX
— Experimentally distinguish turbulent pinch theories

— Look at B, and |, variation in momentum transport (resolved
into y, and V)

— Investigate dependence of momentum transport on
background rotation profile.

 Technique:

— Use n=3 non-resonant magnetic perturbations to distort the
rotation profile, allowing for separation of the roles of
momentum diffusion vs convection (pinch).



Perturbative 7, y,Can be Obtained from Transient
Application of nRMP
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Local Momentum Transport Investigated
During Spin Up After Perturbation

NSTX

e Toroidal rotation evolves according to momentum
balance equation

mnRaV¢ —n+V-T
oa /

where
n = Torque density, m = mass, n = density, V, = toroidal rotation, I’y = momentum flux

« TRANSP calculation of torque coupled with CHERS
rotation measurement -2 Fd) well determined

e Model F¢ evolution to determine diffusive and
convective contributions



Successful Distortion to Rotation Profile
Allows Separation of y,and V pinch
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 Use simple model for momentum flux
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* Must change V, independently of dV /dr
— can unravel relative contribution of x, and V(bpinch
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Reasonably Good Agreement Between Theory and
Experiment in Limited Comparison
@ NsTx
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Can comparisons with large
variations in L, be used to
discriminate between theories?




Unlike lon Heat Diffusivity, Momentum Diffusivity

Scales More Strongly with B, than I,

Momentum Diffusivity (mzfs)
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Is momentum diffusivity tied more to electron
diffusivity when ions are neoclassical?




Steady-State y,Does Not Scale With x As At
Conventional Aspect Ratio
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Is there any rotation dependence?
How does including momentum pinch affect conclusions?

NSTX



Experimental plan

NSTX

Establish MHD quiescent H-mode (max 8 shots)

Bt~0.55T, Ip~0.9MA
17 shots + (8 up-front development

FV J Success or 4 development + 3 physics at end)

Pseudo density scan

Defer
Apply nRMP early vs C_ompare L and H mode
late in discharge (4 shots) single source (7 shots)
1. After L-H transition, drop
from 2 -1 source
2. Develop MHD quiescent
high density L-mode
Three point Bt scan (4 shots) A
Bt ={0.45,0.35} T
If didn’t need
Fail Success development time
: : Rotati hot
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» then followed by additional step
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