

Radiative divertor in highly-shaped H-mode plasmas in NSTX

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, CA

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U** SNL Think Tank, Inc. **UC Davis UC Irvine UCLA UCSD U** Colorado **U** Maryland **U** Rochester **U Washington**

U Wisconsin

College W&M

NSTX Team Review Meeting

13 March 2008 Princeton, NJ

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** loffe Inst **RRC Kurchatov Inst TRINITI KBSI KAIST** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Experiments in NSTX demonstrated several ways of divertor peak heat flux reduction

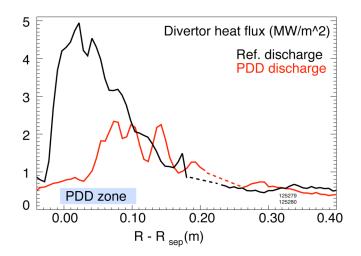
Divertor heat flux mitigation solutions:

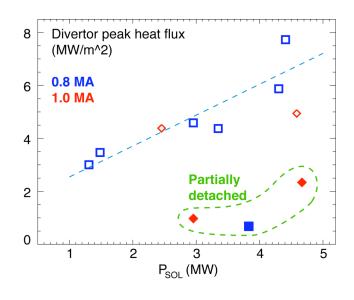
- ✓ Poloidal flux expansion at outer strike point (OSP)
 - Particularly well suited for STs, reduced q_{peak} by up to 50 % in NSTX
- ✓ Strike point sweeping (Plasma stability and control issues?)
- ✓ Radiative divertor
 - reduced $q_{\it peak}$ by up to 60 % in NSTX with D_2 injection (next slides)
- ✓ Radiative mantle
 - $-\,$ reduced $q_{\rm peak}$ by up to 50 % in NSTX (w/ neon) albeit confinement degradation
- ✓ Divertor materials and geometry (plate tilt, closure, number of divertors...)
- These solutions must be compatible with good core plasma performance (H-mode confinement, MHD, ELM regime, density)
- Solutions must scale to very high q_{peak} (15 40 MW/m²) for future devices (NHTX, ST-CTF)
 - Combinations of solutions may work

Radiative divertor removes power and momentum from plasma before it reaches divertor plate

Parallel momentum and power balance

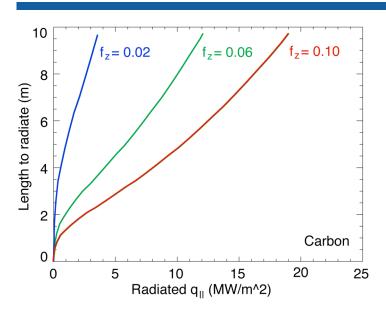
$$\frac{d}{ds}(m_i n v^2 + p_i + p_e) = -m_i(v_i - v_n)S_{i-n} + m_i v S_R$$

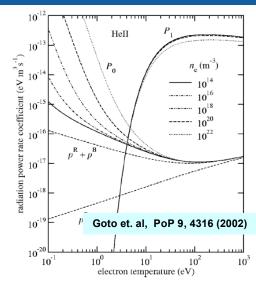

$$\frac{d}{ds}((-\kappa T_e^{5/2}\frac{dT_e}{ds}) + nv_{||}(\frac{5}{2}(T_i + T_e) + \frac{1}{2}m_iv_{||}^2 + I_0)) = S_E$$



Summary of FY 2007 radiative divertor results

- Significant divertor peak heat flux reduction has been demonstrated in highly shaped high-performance H-mode plasmas in NSTX using divertor magnetic flux expansion and radiative divertor simultaneously with high core plasma performance
 - Good synergy of high performance small ELM H-mode regime with PDD
- Learnt detachment characteristics and limitations
 - Detachment achieved only with additional D₂ injection, or with additional low Z intrinsic impurities
 - PDD regime onset is abrupt. High radiated power, neutral pressure, volume recombination rate are measured
 - PDD properties appear to be similar to those observed in tokamaks





Impurity radiation role is to be clarified in radiative divertor experiments in FY 2008

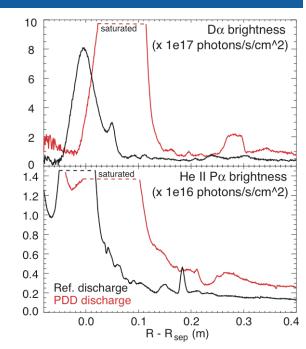
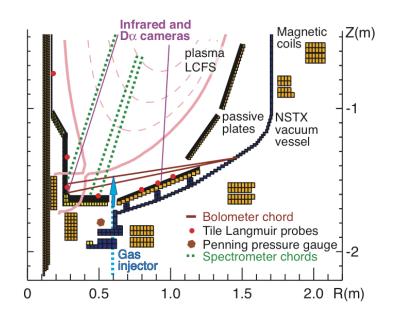


FIG. 14. T_e dependences of P_0 and P_1 for several n_e values for ionized helium.

- It is marginally possible to radiate the necessary fraction of $q_{||}$ with intrinsic carbon in NSTX
- Helium can play an important role in divertor power balance
 - Energy expensive (first I.P. 24.6 eV)
 - Radiates at 1-10 eV
- In FY 2007 experiment
 - Radiated power was due to deuterium, lithium, helium, and carbon
 - He and C were main contributors

FY 2008 radiative divertor experiment is likely to complete radiative divertor studies in NSTX

- Lithium coating experiments (FY 2008 2009) and liquid lithium divertor (FY 2009) will shift emphasis of divertor research to lithium work
- Lithium experiments make radiative divertor work impractical
 - Uncertainties in divertor q_{peak} and P_{rad} measurements
 - Different divertor transport regimes
- Proposed XP fits into the NSTX radiative divertor program in a logical way:
 - Divertor heat flux mitigation in low κ , δ configuration (2005-2006)
 - Divertor heat flux mitigation in highly-shaped configuration with D₂ injection (but also with intrinsic He) (2007)
 - Divertor heat flux mitigation in highly-shaped configuration with D₂ and impurity injections (without intrinsic He) (2008)

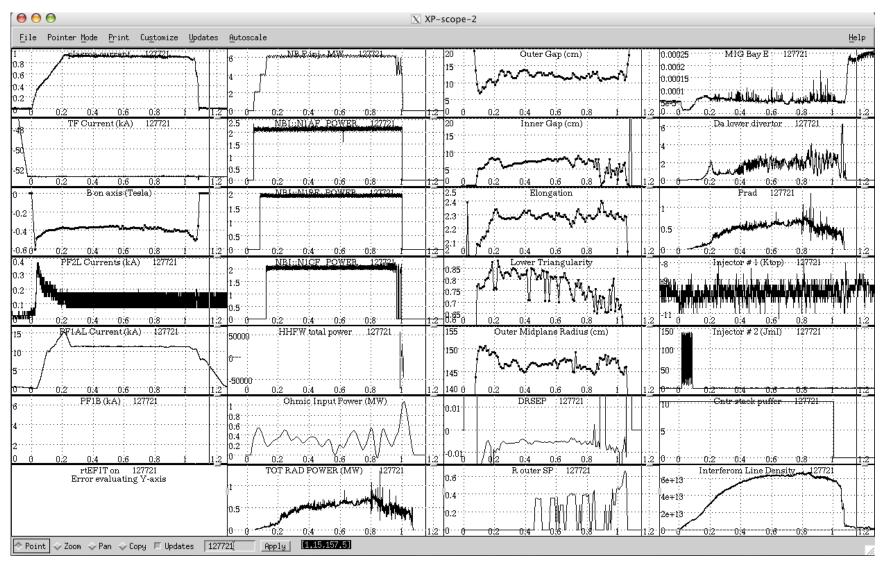

Multiple diagnostic measurements will be needed to elucidate on radiative divertor physics in NSTX

Machine capabilities:

- Low Z_{eff}, low H/D
- Reliable H-mode access
- B_t up to 5.5 kG
- New divertor gas injector (Bay E)
- rtEFIT-controlled highly-shaped configuration for FY 2008

Needed diagnostics:

- IR cameras (upper/lower divertor heat flux)
- Bolometers (core plasma and new divertor bolometers)
- Dα, Dγ, C III divertor cameras
- Neutral pressure gauges (incl. 3 lower div. Penning gauges)
- Divertor Langmuir probes
- MPTS, CHERS, ERD (n_e, T_e, n_c)
- Spectroscopy (D I Balmer series, impurities)
- Gas puff imaging


Radiative divertor XP: three parts involving different magnetic configurations and gas injections

- Obtain highly–shaped (κ = 2.2-2.3, δ = 0.65-0.75) LSN reference shot and reproduce PDD conditions at three I_p , P_{NBI} values (up to 10 shots)
 - Wall conditions should permit reproducible H-mode access with 2 NBI sources.
 - Use 3 NBI sources at full energy (80-90 kV)
 - HFS plenum pressure is 1100-1300 Torr
 - Example shots: 127721 (0.9 MA, 6 MW NBI), 125277 (1.0 MA, 4 MW NBI), 125280 (1.0 MA, 6 MW NBI)
 - Configuration will be adjusted to obtain drsep ~ -10 -12 mm,
 - rtEFIT control will be used
 - Operate GPI and divertor fast camera in PDD shots to elucidate on Lodestar blob theory and turbulence measurements
 - Use new Bay E lower divertor gas injector with D₂ at 70 160 Torr I /s . Perform a gas injection rate and/or time scan (5 shots). Use new Bay E lower divertor gas injector. As a backup option, may use Branch 5 injector and the PZV4/4a valve to inject gas in the outer SOL close to outer strike point.
- Obtain highly–shaped (κ = 2.2-2.3, δ = 0.65-0.75) DN reference shot and obtain PDD conditions at three I_p , P_{NBI} values using various gas injection rates (up to 10 shots)
- Obtain highly–shaped (κ = 2.2-2.3, δ = 0.65-0.75) LSN reference shot and obtain PDD conditions using He or CD₄ injection (up to 10 shots)

Waveforms

