

ffice of usion nergy tiences

XP818: ELM Mitigation with Midplane Control Coils

S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others... (joint ELM mitigation team)

NSTX Team Review

February 19, 2008 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL** PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils

- Goal
 - Demonstration of ELM mitigation with NSTX midplane RWM coil set
- Approach
 - Target development
 - (i) low q_{95} < 6; (ii) swept q_{95} to insure mitigation not missed due to resonance ; (iii) high q_{95} > 8
 - □ Application of DC fields (broader *n* spectrum, new 2008 capabilities)
 - Past odd parity fields (n = 3, 1+3) operating on low q_{95} target
 - New even parity field (n = 2 (strong n = 4), 6) capability for 2008
 - New combined odd/even parity (present favorite n = 2 + 3)
 - Application of AC fields
 - Using either/both odd and even parity fields; co/ctr propagation
 ELM mitigation through effects on edge plasma profiles
 - Feedback on *n* = 1
 - □ May be useful for giant ELMs, buildup detected by RWM B_r sensors

Repeat techniques showing most potential in low recycling (post-LITER)

New non-axisymmetric field capability allows new combinations for ELM mitigation

 n = 2+3 field can produce Chirikov overlap near the plasma edge at reasonable SPA currents

Simulation: RWM coils (1-4) 0.5 kA, (2-6) 0.5 kA, (3-5) 1.5 kA

ELM mitigation by DC fields might be resonant effect

DIII-D indicates narrow q window for ELM mitigation

• Should scan q_{95} to insure that window is not missed

Planned mixed even/odd parity fields require nondiametrically-opposed coil pairs

odd parity fields alone are standard anti-series connection

even parity fields alone are "new" standard series connection

XP818 ELM Mitigation - Run plan

Task	Numbe	r of Shots
1) Create target plasmas		
A) Create q95 < 6 target: (generate at least 10 ELMs with approximately even spacing)		
(<i>q</i> 95 ~ 5.5 is adequate)		
- Use shot 124349 as setup shot, (<i>Ip</i> = 0.8 MA, <i>Bt</i> = 0.5 T), change NBI source C to 1 MW unmodulated		0
Deine Inte 0.0 MA: change Bt to 0.45T, then 0.40T		2
- Raise ip to 0.9 MA, change Bl to 0.451, then 0.401		3
- II q95 > 6 and insumclem ELIVIS, perform startup optimizations as per 5. Menard		(0)
R) Croate g05 romp torget		(0)
B) Create qg famp target created in step (1A). In flat tep to 0.7 MA, remaining up		
- Start from low q95 target created in step (TA), ip hat-top to 0.7 MA, ramping up		٨
$_{-}$ if plasma drops out of H-mode, start in ramp from 1.0 MA ramping to 0.7 MA		+ (2)
- very <i>Bt</i> to change range of <i>a</i> ramp (optional)		(2)
c) Create $a95 > 8$ target		(2)
- Use shot 124349 as setup shot $(I_{D} = 0.8 \text{ MA} Bt = 0.5 \text{ T})$ change NBI source C to 1 MW unmodulated		
- Drop I_D to 0.7 MA: tweak to 0.75 MA if desired		2
2) Attempt ELM mitigation with non-axisymmetric fields under normal recycling conditions		
- <u>DC fields</u> :		
A) Apply $n = 3$ field configuration; vary amplitude from 1.5 kA		4
B) Apply $n = 3 + 1$ field configuration; vary amplitude from 1.0 kA, 0.5 kA		4
C) Apply $n = 2 + 3$ field configuration		
(start from RWM (1-4) 0.5kA, RWM (2,6) 0.5kA, RWM (3,5) 1.5 kA)		4
D) Apply $n = 2$ field configuration; vary amplitude from 1.5 kA		4
E) Apply $n = 6$ field configuration (primary field is $n = 0$); vary amplitude from 2.5 kA		3
- <u>AC fields (pre-programmed)</u> :		
F) Apply $n = 3$; vary f above/below ELM frequency; vary amplitude from 2.0 kA		4
G) Apply n = 1 (co-propagating); vary f above/below ELM frequency; vary amplitude		4
H) Apply $n = 1$ (ctr-propagating); vary f above/below ELM frequency; vary amplitude		4
- <u>AC fields (n = 1 feedback)</u> :		
I) $n = 1$ Br feedback: giant ELM target (e.g. 125271), vary (i) gain (ii) phase		6
3) Attempt ELM mitigation with non-axisymmetric fields under reduced recycling conditions		16
т	otol (optional);	64 (10)

Total (optional): 64 (12)

XP818 ELM Mitigation – first "1/2" day run plan

Task Nu	umber of Shots
1) Create target plasmas	
A) Create q95 < 6 target: (generate at least 10 ELMs with approximately even spacing)	
(<i>q95</i> ~ 5.5 is adequate)	
- Use shot 124349 as setup shot, ($Ip = 0.8$ MA, $Bt = 0.5$ T), change NBI source C to 1 MW unmod	ulated 2
- Raise <i>Ip</i> to 0.9 MA; vary Bt to 0.45T, then 0.40T	3
- If q95 > 6 and insufficient ELMs, perform startup optimization as per J. Menard to raise qmin.	(8)
B) Create <i>q95</i> ramp target	
- Start from low q95 target created in step (1A), Ip flat-top to 0.7 MA, ramping up	
to 1.0 MA; adjust eventual <i>Ip</i> flat-top if needed to create steady ELMs.	4
 If plasma drops out of H-mode, start Ip ramp from 1.0 MA ramping to 0.7 MA 	(2)
- Vary <i>Bt</i> to change range of <i>q</i> ramp (optional)	(2)
2) Attempt ELM mitigation with non-axisymmetric fields under normal recycling conditions	
- DC and AC fields:	
i) Apply DC $n = 3$ field configuration; vary amplitude from 1.5kA	2
ii) Apply AC $n = 3$; vary f above/below ELM frequency; vary amplitude	2
iii) Apply DC $n = 3 + 1$ field configuration; vary amplitude from 1.5kA	2
iv) Apply AC $n = 1$ (co-propagating); vary f above/below ELM frequency; vary amplitude	2
(optionally include $n = 3$ based on results from (iii) above)	

Total (optional): 17 (12)

