Field scaling of electron transport change with heating power

D. Stutman, L. Delgado, K. Tritz, M. Finkenthal Johns Hopkins University

> S. Kaye, B. LeBlanc, M. Bell, R. Bell PPPL

Unusual T_e broadening with P_{NB} in NSTX H-modes

1 MA, 4.5 kG, early heating, small-ELM H-mode, t=0.425 s

- Caused by large increase in central χ_e with P_{NB} ; ions stay neoclassical
- Genuine electron transport effect:
 - large χ_{e} at high \textbf{P}_{NB} supported by perturbative experiments
- not caused by MHD induced fast ion redistribution (faint MHD, TRANSP matches neutrons, little effect on χ_e even if ions redistributed)
- q, ω_{ExB} generally also change with P_{NB}

Recipe for varying P_{NB} at fixed q, ω_{ExB} developed in XP612

• Preheat to 'freeze-in' q-profile -> step P_{NB}, also inject Li pellet

Large change in electron heating at fixed q, ω_{EXB} possible

XP822: χ_e degradation with P_{NB} as a function of B_t

- Use recipe from XP 612 to change electron heating at fixed q, n_e, ω_{ExB}
- Step P_{NB} at different B_t and fixed I_p/B_t :

0.45 T / 0.9 MA: 4->6, 4->4, 4->2 0.55 T / 1.1 MA: 4->6, 4->4, 4->2 0.36 T / 0.7 MA: 4->6, 4->4, 4->2

- Correlate transport changes with changes in high-k scattering (r/a ~ 0.2)
- Inject Neon to document eventual particle diffusivity changes

Does central particle diffusivity also degrade with P_{NB} ?

6 MW H-mode (D. Stutman EPS 06)

• Inject Ne early, look for change in impurity influx after P_{NB} step

		P _{NB}		#shots
B_t / I_p				
4.5/0.9	4->4	4->6	4->2	2x3
3.6/0.7	4->4	4->6	4->2	2x3
5.5/1.1	4->4	4->6	4->2	2x3
		Neon		
5.5/1.1	4->4	4->6	4->2	1x3

21 shots

• Baseline discharges 121135 (small ELM DND, 4.5 kG, 1 MA,

κ~2.25, δ**~0.6**), and 121172 (5.5 kG, 1.2 MA)

• Possibly controlled access to change high-k to r/a~0.65

Backup slides

Mild core MHD, comparable amplitude at all P_{NB}

2 MW

time of comparison

•T_e flattening appears genuine electron transport effect

- Fast ion diffusivity increased in TRANSP to study effects of fast ion redistribution
- Order of magnitude increase in D_{fast} does not change χ_e much, while neutron rate decreases well below experiment
- Conclusion holds even when D_{fast} increase limited to r/a < 0.5