Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Investigation of "X-point limiter" plasmas					
	PROPOSAL AF	PROVALS			
Responsible Author:		Date			
ATI – ET Group Lea	der:	Date			
RLM - Run Coordina	ator:	Date			
Responsible Division	: Experimental Research O	perations			
MINOR MO	DIFICATIONS (Approve	d by Experimental Research Operations)			

NSTX EXPERIMENTAL PROPOSAL

TITLE:Investigation of "X-point limiter" plasmasAUTHORS:M. Bell, R. Maingi, K-C. Lee

No. **OP-XP-826** DATE: **Mar 18, 2008**

1. Overview of planned experiment

This experiment will investigate plasma "X-point limiter" plasma configurations where the dominant lower X-point is brought very close to, or possibly beyond, the outer divertor plate. Access to the H-mode, energy confinement and the heat flux onto the divertor plate will be assessed. The initial experiment is planned to be run before lithium coating. If successful, a second investigation will be carried out with lithium evaporated onto the lower divertor.

2. Theoretical/ empirical justification

Coping with both steady-state and transient heat loads is a critical issue for ITER and any future even larger tokamak because the ratio of the plasma volume to plasma contact area increases with size. Conventional poloidal divertors are usually incorporated in tokamaks because they are associated with reliable access to the improved confinement of the H-mode. However, divertors in which the X-point is separated from the divertor target tend to exacerbate the power handling problem by increasing the poloidal field where the scrape off contacts the target, so extreme tilting of the plate and/or sweeping of the strike point are required in large tokamaks.

The H-mode can be obtained, however, without an X-point defining the boundary. A good example comes from JET in its early investigation of H-modes in the 1980s. It was discovered, after the fact, that many of its H-mode discharges that had been thought to be diverted were actually limited by armor at the top of the vacuum vessel with the X-point just outside the last closed flux surface. Some of these large-volume discharges had produced the highest energy confinement times achieved in JET. Another example is the H-mode which was regularly produced by ramping down the plasma current in TFTR "supershots" which were limited by a nearly conformal surface on the inboard side. The high poloidal beta and high internal inductance produced by this technique reduced the poloidal field at the inboard midplane producing an X-point just beyond the limiter surface. In addition to triggering an H-mode transition, this configuration spread the heat flowing through the scrape-off layer over a large area on the limiter surface. The critical factor for the H-mode may not be an X-point defining the boundary but simply a region of high magnetic shear near the plasma boundary.

In his Alfvén prize address to the EPS Conference in Rome (2006), P-H. Rébut suggested that the "X-point limiter", similar to the early JET configuration, would a better approach to managing the plasma-material interface in ITER than the present divertor because flux expansion approaching the poloidal field null and the nearly tangential contact of field lines with the surface would spread the heat load. An assessment of this configuration in NSTX would be relevant both to ITER and ST development.

This experiment will also provide data to test the theory [K.C. Lee, *Phys. Plasmas*, **13**, 062505 (2006)] that the radial gradient in the edge neutral density is a critical parameter for triggering the H-mode so that reducing the distance of the X-point to the divertor target should reduce the H-mode power threshold.

3. Experimental run plan

- 1. Rerun shot 123139 (1.0MA) and compare H-mode access and overall performance. (1 shot)
- 2. If the flattop is too short and limited by OH flux, decrease the plasma current to 0.9MA (1)
- 3. Measure the approximate H-mode power threshold by a binary power search on successive shots, using PWM of source B for fractional power steps: 2 sources, 1 source, 1.5 or 0.5 sources. (3)
- 4. Reduce PF1AL, PF1AU currents to zero, and set the ratio of PF2L to plasma current to 4kA/MA and PF2U to 2.5kA/MA. Run a shot with 2 NB sources. If necessary adjust outer boundary control parameters. Assess need for small programmed PF1A currents to compensate for the time-varying OH leakage field. (*3*)
- 5. Reduce PF2L current control ratio to 3.5kA/MA and repeat step 3 assessments. (3)
- 6. Decide whether to lower PF2L current control ratio further to 3kA/MA depending on equilibrium shape achieved and plasma performance. (*3 additional shots possible*)
- 7. At lowest X-point achieved, assess whether conditioning of the new contact point is occurring (3)
- 8. When conditions stabilize, measure the H-mode power threshold by a binary power search on successive shots, as at step 2 but with at least one additional iterative step. (4)
- 9. If the threshold is substantially different, return to an intermediate X-point location and repeat the power theshold search. (4)
- 10. Return to the original shape at step 2 and reconfirm the power threshold. (2)

Total shots: 24 – 27

The extremes of the scan may be repeated after lithium conditioning is routinely available.

4. Required machine, NBI, RF, CHI and diagnostic capabilities

- 1. The reference shot from 2007 does use rtEFIT and this is the preferred method of control.
- 2. The first phase of this experiment should precede use of lithium conditioning, either with LITER or the proposed lithium powder injection.
- 3. Modulation of NB source B or C is needed to assess the H-mode power threshold.
- 4. Reliable H-mode operation in standard NB-heated fiducial shots is a prerequisite.

5. Planned analysis

Data will be obtained for full transport analysis. The data will also be analyzed for the assessing the effect of the edge neutral density on the H-mode transition.

6. Planned publication of results

First reports will be made at the APS meeting in November 2008. A journal publication will be prepared after the initial conference presentaitons.

PHYSICS OPERATIONS REQUEST

TITLE: Investigation of "X-po AUTHORS: M. Bell, R. Maing	L	No. OP-XP-826 DATE: Mar 18, 2008			
Machine conditions (specify ranges as appropriate)					
I_{TF} (kA): -53 Flattop	Flattop start/stop (s): -0.025 / 1.0				
I_{P} (MA): 1.0 Flattop	start/stop (s): 0.2 / 0.8				
Configuration: <u>Limiter</u> / DN / <u>LSN</u> / USN					
Outer gap (m): 0.1	Inner gap (m): 0.05				
Elongation κ : 2.3	Upper/lower triangularity	yδ: ~ 0.7 - ~0			
Z position (m): ~ 0					
Gas Species: D	Injector(s):				
NBI Species: D Sources: ABC	Voltage (kV): 90	Duration (s): 1.0			
ICRF Power (MW): 0	Phasing:	Duration (s):			
CHI: On / <u>Off</u> Bank capacitance (mF):					
LITER: Off initially; if successful, experiment may be continued with LITER					
Shot numbers for setup: Start with 123139, then proceed to lower PF1A and increase					

PF2 currents according to prescription in Sec. 3.

An alternative starting shot is 125272 (0.8MA, non-rtEFIT) or 127050

DIAGNOSTIC CHECKLIST

TITLE: Investigation of "X-point limiter" plasmas AUTHORS: M. Bell, R. Maingi, K-C. Lee

No. **OP-XP-826** DATE: **Mar 18, 2008**

Note special	diagnostic	requirements	in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array	\checkmark	
Bolometer – divertor		\checkmark
CHERS – toroidal	\checkmark	
CHERS – poloidal		\checkmark
Divertor fast camera		\checkmark
Dust detector		
EBW radiometers		
Edge deposition monitors		\checkmark
Edge neutral density diag.		\checkmark
Edge pressure gauges		\checkmark
Edge rotation diagnostic		\checkmark
Fast ion D_alpha - FIDA		\checkmark
Fast lost ion probes - IFLIP		\checkmark
Fast lost ion probes - SFLIP		\checkmark
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		\checkmark
Infrared cameras	\checkmark	
Interferometer - 1 mm		
Langmuir probes – divertor		\checkmark
Langmuir probes – BEaP		\checkmark
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Pickup coils	\checkmark	
Magnetics – Rogowski coils		
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors		
Mirnov coils – high f.		\checkmark
Mirnov coils – poloidal array		\checkmark
Mirnov coils – toroidal array		\checkmark
Mirnov coils – 3-axis proto.		

Diagnostic	Need	Want
MSE	\checkmark	
NPA – ExB scanning		\checkmark
NPA – solid state		
Neutron measurements	\checkmark	
Plasma TV	\checkmark	
Reciprocating probe		
Reflectometer – 65GHz		\checkmark
Reflectometer – correlation		\checkmark
Reflectometer – FM/CW		\checkmark
Reflectometer – fixed f		\checkmark
Reflectometer – SOL		\checkmark
RF edge probes		
Spectrometer – SPRED	\checkmark	
Spectrometer – VIPS	\checkmark	
SWIFT – 2D flow		\checkmark
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays	\checkmark	
Ultrasoft X-rays – bicolor		\checkmark
Ultrasoft X-rays – TG spectr.		\checkmark
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		\checkmark