

Department of Ener

<u>XP933: NTV physics at varied $v_i^*/q\omega_E$ and search for offset rotation in NSTX</u>

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, S.P. Gerhardt², J.E. Menard², J.M. Bialek¹, L. Delgado-Aparicio³, D.A. Gates², B. LeBlanc², F. Levinton⁴, K. Tritz³, H. Yu⁴

¹Department of Applied Physics, Columbia University, New York, NY

²Princeton Plasma Physics Laboratory, Princeton, NJ

³Johns Hopkins University, Baltimore, MD ⁴Nova Photonics, Inc., Princeton, NJ

NSTX Research Team Review

May 11th, 2009 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

• Motivation $\frac{\text{XP933: NTV physics at varied } v_i^*/q\omega_E}{\text{offset rotation in NSTX}}$

- Determine key aspects of NTV physics to gain confidence in extrapolation to future devices
- Goals
 - Investigate damping over range of $v_i^*/q\omega_E$ to determine if the expected saturation of NTV at increased E_r actually occurs
 - Key for both low and high rotation devices (ITER, ST-CTF)
 - Does ST data reveal new physics, or revise applicability criteria?
 - Determine neoclassical offset rotation
 - NTV offset rotation found in tokamaks (Garofalo, 2008), but not yet determined in NSTX
 - Potentially important low ω_{ϕ} devices (ITER)
 - Reversed I_p operation will allow better determination of offset rotation

Addresses

ITPA joint experiment MDC-12

Does $1/v_i$ scaling $\rightarrow v_i/(v_i^2 + \omega_E^2)$?

Past NSTX data shows a small region of applicability for NTV collisionless regime scaling

• n = 3 braking "configuration

Frequency profiles

- Collisionless NTV formulation valid in region of peak measured damping where $q\omega_E < v_i/\epsilon < \epsilon^{0.5}\omega_{Ti}$
- Computed/observed damping near boundary (low T_i, collisional regime) typically far weaker
- □ Uncertain if $\omega_{\rm E} < \varepsilon^{0.5} \omega_{\rm Ti}$ criterion is required for collisionless damping
 - Adequate criterion to describe NTV saturation due to E_r effects?
 - the ω_E calculation neglects poloidal flow and uses carbon ω*, may be overestimated

Resonant braking eventually confuses non-resonant braking in past

XP933 NTV physics and ω_{ϕ} offset - S.A. Sabbagh

<u>Utilize lithium and n = 1 EFC to study non-resonant</u> <u>braking over long timescale > momentum diffusion time</u>

Past data

- Non-resonant braking evolves into resonant braking, precludes accurate non-resonant NTV evaluation
- New approach
 - Utilize n = 1 EFC and lithium to delay or eliminate rotating n = 1 MHD
 - n = 1 MHD is the cause for strong resonant ω_{ϕ} damping
 - **Examine braking from different initial** ω_E ($v_i^* < 1$), at various R
 - Initial n = 3 braking field to vary initial $\omega_{\rm E}$, then increase braking
 - If $v_i^*/q\omega_E(R) > 1$, should observe $T_i^{5/2}$ scaling
 - If $v_i^*/q\omega_E(R) < 1$, should observe saturation in braking, or other (?) scaling
 - □ Look for NTV offset rotation $(T_{NTV} \sim \delta B^2(\omega_{\phi} \omega_{\phi-offset}))$
 - Allow second quasi-steady-state ω_{ϕ} to be reached after 2nd braking pulse; will data support existence of $\omega_{\phi-offset}$? (a counter-I_p offset)

Supplement co-injection data with *counter-injection* data - best conclusion
NSTX

<u>XP933: NTV physics at varied $v_i^*/q\omega_E$ and search for offset rotation in NSTX</u>

Task Number of Shots	
1) Create targets and control shots near ideal no-wall beta limit (similar to 130722)	
(use 133078 fiducial as setup shot, 2 or 3 NBI sources, eventually use LITER)	
A) n = 1 fast feedback, no n = 3 field; 3, then 2 NBI sources, no Li, passivate with D glow if needed	2
B) If sufficiently long rotating MHD-free period, apply n = 3 field, 0.8 kA (control shot, no Li)	2
C) Apply lithium, apply n = 3 field at same time as $1(B)$ – for comparison to n = 2 data from 2008	2
D) Bring n = 3 field earlier (t ~ 0.2s), n = 1 EFC 50ms filter starting ~ 0.5s, to prepare for step (2)	2
2) ExB frequency variation	
A) Early n = 3 application (t ~ 0.2s), vary n = 3 current to produce three different quasi-steady ω_E leve	els 6
B) Step up n = 3 currents from three different quasi-steady levels produced in 2(A) at t ~ 0.5s	

(timing depends on rotating MHD); reach quasi-steady state with 3 different braking currents 6

3) Search for NTV offset rotation

A) If data from step 2(B) insufficient to determine by $\omega_{\phi-offset} = \omega_{\phi} - K/\delta B^2$), run other n = 3 amplitudes 4

B) Reversed I_p scans

Repeat scan 2 above in reversed I_n

Total (standard I_p ; reversed I_p): 24 ; 12

12

<u>XP933: NTV physics at varied $v_i^*/q\omega_E$ - Diagnostics</u>

- Required diagnostics / capabilities
 - RWM coils in n = 1,3 configuration, n = 1 feedback and EFC
 - CHERS toroidal rotation measurement
 - Thomson scattering
 - MSE
 - Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
 - Diamagnetic loop
- Desired diagnostics
 - USXR and ME-SXR
 - FIReTip
 - Fast camera

