

S.A. Sabbagh¹, R.E. Bell², J.W. Berkery¹, L. Delgado-Aparicio², S.P. Gerhardt³, J.E. Menard³, J.M. Bialek¹, D.A. Gates³, B. LeBlanc³, F. Levinton⁴, K. Tritz⁵, H. Yu⁵

¹Department of Applied Physics, Columbia University, New York, NY

²Johns Hopkins University, Baltimore, MD

³ Princeton Plasma Physics Laboratory, Princeton, NJ ⁴Nova Photonics, Inc., Princeton, NJ

NSTX Research Team Review

May 11th, 2009 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Department of En

<u>XP935: Search for multiple RWM behavior at high β_N </u>

Goals

- Determine if unstable RWM is born from observed, stable RWM (with frequency at peak resonant field amplification XP931), or a 2nd mode
 - Either result is important
 - If same mode, supports single mode physics model; key conclusion for RFA control of NBI (future milestone)
 - If second mode, supports multi-mode theory, PRL-level conclusion, key conclusion for RWM control in ST, also, key conclusion for RFA control of NBI
- **Determine** β_N dependence of RFA for these modes near marginal stability
- Determine effect of ω_{ϕ} on both modes as marginal stability approached
- Determine effect of active n = 1 control for these modes near marginal stability

Addresses

- NSTX R(09-1) and (##) milestones,
- □ ITPA joint experiment MDC-2.1, MDC-2.2

Multi-energy SXR reconstructions of actively stabilized RWMs

- n=3 braking and n=1 stabilizing fields modified kinetic profiles at early times.
- Are the RMPs taking out the H-mode density "ears"?
- Increased edge n_Z blobs during stabilization; good correlation with drops in T_{e0} & S_n .

• May have identified a stable RWM near the natural RFA resonance.

L. Delgado-Aparicio

Direct approach to observe multiple RWMs

Approach

- Past approach: determine ideal mode structure and compare to external magnetics
- ME-SXR allows direct approach to finding mode
 - direct observation of stable, rotating RFA as RWM is driven unstable
 - RFA to be diagnosed in XP931 with ME-SXR
- Unstable RWM will either
 - Grow from stable, rotating RFA as marginal stability is approached
 - Grow independent of stable RFA as instability threshold is crossed

Mode distinction

- Examine frequency and global extent of mode
 - RFA observed with ME-SXR at ~ +30 Hz (co-rotation), radial extent determined from signal inversion; correlate with RWM magnetic sensors
 - Unstable RWM can be born rotating, "wobbling", or (typically) grows locked; typical mode growth, rotation measured by RWM sensors

Supplement with ME-SXR and USXR measurements

<u>XP935: Search for multiple RWM behavior at high β_N </u>

Task Numbe	r of Shots
1) Create target plasma (use Li conditioning)	
A) Start from high performance fiducial w/n=1 FB (133078), adjust I _p for maximum β_N	4
B) Ramp n = 3 from correction to braking to reach RWM marginal stability, n = 1 FB or	if 2
C) Add n = 1 AC pre-programmed +30Hz to quasi-steady-state, n = 1 FB off	2
2) Vary ω_{ϕ} and β_{N}	
A) Reduce ω_{ϕ} with n = 3 braking at highest β_{N} (full NBI power)	4
B) Reduce ω_{ϕ} with n = 3 braking at reduced $\beta_{N} > \beta_{N}^{\text{no-wall}}$ (reduced NBI power)	4
3) Compare results under active n = 1 RWM control	
A) Repeat conditions from (2a) with AC pre-programmed +30 Hz off, n = 1 FB on	3
B) Repeat conditions from (2a) with AC pre-programmed +30 Hz off, n = 1 FB on	3
4) <u>Control shots</u>	
A) Magnetics only shot with $n = 3$ waveform and $n = 1$ AC pre-programmed field	1

Total: 23

XP935: Search for multiple RWMs - Diagnostics

Required diagnostics

- ME-SXR and USXR, filters set for optimal RFA/RWM diagnosis (determined from XP931)
- Internal RWM sensors
- CHERS toroidal rotation measurement
- Thomson scattering
- MSE
- Toroidal Mirnov array / between-shots spectrogram with toroidal mode number analysis
- Diamagnetic loop
- Required capabilities
 - n = 1 feedback
 - LITER operation

