

Dependence of P_{LH} on X-point Radius

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U ORNL PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

R. Maingi¹, S. Gerhardt^{2,} C.S. Chang³, G. Park³

- 1) Oak Ridge National Lab
- 2) Princeton Plasma Physics Lab3) NYU

NSTX XP review Princeton, NJ Feb. 6, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Dependence of the L-H power threshold on X-point CAK radius

- In NSTX, DIII-D, JET (and probably other machines), an observation that P_{LH} decreases with triangularity (radius of Xpoint) has been noted but not documented
 - Could have an impact on future operational scenarios, using low δ to get H-mode and higher δ for improved stability, confinement
- CS Chang proposed in ~ 2003 that the ion loss near the Xpoint increased with increasing R (calcs. confirmed recently)
 - This would set-up a pre-transition $\rm E_r$ more easily and could translate to a lower $\rm P_{LH}$
- Goal: document the dependence of P_{LH} on triangularity (X-point radius) at fixed κ , δ_r^{sep}
 - Target δ =0.4, 0.6, 0.8 (in LSN configuration)
 - Need XGC modeling/analysis to document results

Existence proof - we used to make lower δ shots routinely a long time ago (2002)

AK

Recent XGC-0 calculation confirms larger X-point thermal loss and E_r/E_r' at large R_x

- NBI scan at three different $R_x (\delta_L)$ to document E_r and P_{LH}
 - I_p=0.7-0.9 MA, B_t=0.45 T, κ ~ 2, δ_r^{sep} ~ -1.5 cm, X-point height ~ 20 cm, outer gap ~ 10 cm
- Measure P_{LH} in $\delta_L \sim 0.4$ discharge (rtEFIT: 119838) [10]
 - Decision point: 0.7, 0.8, or 0.9 MA? (ohmic I_p ramp, 'high' P_{LH} desired)
 - Preliminary development in 'XP 900' will inform this part
 - Reduce NBI voltage as needed: C as low as possible, B~65, A~80-90
 - Pulse-width modulation if needed
- Measure P_{LH} in $\delta_L \sim 0.7$ discharge (rtEFIT: 127267) [8]
 - Make sure to get comparison at same P_{LH} as for $\delta_L \sim 0.4$
- Measure P_{LH} in $\delta_L \sim 0.5$ discharge (rtEFIT: 127281) [8]
 - Make sure to get comparison at same P_{LH} as for $\delta_L \sim 0.4$ and 0.7