Princeton Plasma Physics Laboratory NSTX Experimental Proposal

	*	•		
Title: Effect of Rotation on the L-H Threshold				
OP-XP-841	Revision: 0	Effective Date: 6/19/08 Expiration Date:		
		(2 yrs. unless otherwise stipulated)		
	PROPOSAL APPROVA	ALS	1	
Responsible Author: Stanl	ey Kaye		Date 6/22/08	
ATI – ET Group Leader: Stanley Kaye			Date	
RLM - Run Coordinator: Michael Bell Date			Date	
Responsible Division: Exp	erimental Research Operations			
<u>Chit R</u>	eview Board (designated by R	un Coordin	<u>ator)</u>	
MINOR MODIFI	CATIONS (Approved by Expe	rimental Re	esearch Operations)	

NSTX EXPERIMENTAL PROPOSAL

TITLE: Effect of rotation on L-H threshold AUTHORS: S. Kaye

No. **OP-XP-841** DATE: **June 19, 2008**

1. Overview of planned experiment

The goal of this experiment is to study the effect of rotation on the L-H threshold power. n=3 braking will be used to vary the rotation.

2. Theoretical/ empirical justification

This XP is an element of the study of the 2008 Joule milestone, and it is to study the effect of rotation, and by extension rotational shear at the edge, on the L-H threshold. This has direct bearing on developing an understanding of the effect of this edge rotational shear and how it might impact thresholds in future devices at both low rotation (ITER) and at higher rotation (NHTX, ST-CTF).

3. Experimental run plan

- Establish L-H threshold power in low- κ , δ discharge (129019 baseline) using one source (use B initially); vary voltage in source to achieve threshold. If necessary modulate source to lower power even farther
 - Use optimal n=3 error field correction (-300 Å in SPA1) and n=1 mode control
 - Source C will allow lower power (voltage) if necessary
- Vary n=3 SPA coil current to 0 A, 400 A, 800 A
- Establish threshold in same manner at each level.
- Use 10-15 mg/min Li evaporation.
- No HeGDC between shots.
- Shorten shot to 500-600 ms to reduce shot cycle to 10 minutes.

Condition	I _p (MA)	$\mathbf{B}_{\mathrm{T}}\left(\mathbf{T}\right)$	SPA 1 Current (steady)
1	0.9	0.45	-300 A (optimum)
2	0.9	0.45	0 A
3	0.9	0.45	400 A
4	0.9	0.45	800 A

TABULAR SHOT LIST

Total: 18 shots

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Discharge reproducibility, ability to achieve H-mode with one source.

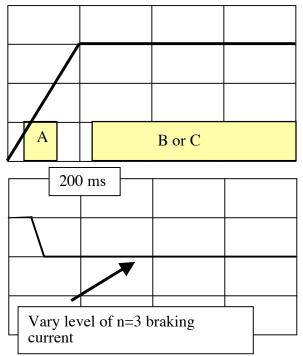
Important feature is to use NBI pre-heat (source A only) from 80-140 ms, then turn source back on after I_p flattop, at 220 ms.

5. Planned analysis

EFIT, TRANSP, specialized codes

6. Planned publication of results

Joule milestone, TTF, ITPA, IAEA


PHYSICS OPERATIONS REQUEST

TITLE: Effect of rota AUTHORS: S. Kaye	tion on L-H threshold	No. OP-XP-841 DATE: June 19, 2008
Machine conditions (spec	ify ranges as appropriate)
I _{TF} (kA): 52 (4.5 kG)	Flattop start/stop (s):	
$I_{P}(MA)$: 0.9	Flattop start/stop (s):	
Configuration: LSN		
Outer gap (m):	Inner gap (m):	
Elongation κ: ~ 1.8	Upper/lower tri	iangularity δ: ~ 0.45
Z position (m): 0		
Gas Species: D	Injector(s):	
NBI Species: D Sources	: 3 Voltage (kV):	55-80 (B, C), 90 (A) Duration (s): <0.6 s
ICRF Power (MW): 0	Phasing:	Duration (s):
CHI: Off Bar	nk capacitance (mF):	

LITER: Off (during initial attempt at XP)

Either: List previous shot numbers for setup: **129019**

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc.

DIAGNOSTIC CHECKLIST

TITLE: Effect of rotation on L-H threshold AUTHORS: S. Kaye

No. **OP-XP-841** DATE: **June 19, 2008**

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array	\checkmark	
Bolometer – divertor		
CHERS – toroidal	\checkmark	
CHERS – poloidal	\checkmark	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		\checkmark
Edge pressure gauges		\checkmark
Edge rotation diagnostic	\checkmark	
Fast ion D_alpha - FIDA	\checkmark	
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		\checkmark
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		\checkmark
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		\checkmark
Langmuir probes – BEaP		
Langmuir probes – RF ant.	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Pickup coils	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents	\checkmark	
Magnetics – RWM sensors		
Mirnov coils – high f.	\checkmark	
Mirnov coils – poloidal array		
Mirnov coils – toroidal array	\checkmark	
Mirnov coils – 3-axis proto.		

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE		\checkmark
NPA – ExB scanning		
NPA – solid state		\checkmark
Neutron measurements	\checkmark	
Plasma TV	\checkmark	
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		\checkmark
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED	\checkmark	
Spectrometer – VIPS	\checkmark	
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays	\checkmark	
Ultrasoft X-rays – bicolor		\checkmark
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		